Exemple #1
0
def get_log_spirals(subject_id,
                    gal=None,
                    angle=None,
                    pic_array=None,
                    bar_length=0):
    drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
    if gal is None or angle is None:
        gal, angle = gu.get_galaxy_and_angle(subject_id)
    if pic_array is None:
        pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)

    path_to_subject = './lib/distances/subject-{}.npy'.format(subject_id)

    distances = gu.get_distances(subject_id)
    if distances is None or distances.shape[0] != len(
            drawn_arms) or not os.path.exists(path_to_subject):
        # print('\t- Calculating distances')
        distances = metric.calculate_distance_matrix(drawn_arms)
        np.save('./lib/distances/subject-{}.npy'.format(subject_id), distances)

    p = Pipeline(drawn_arms,
                 phi=angle,
                 ba=gal['PETRO_BA90'],
                 image_size=pic_array.shape[0],
                 distances=distances)

    arms = p.get_arms(clean_points=True, bar_length=bar_length)
    # print('Identified {} spiral arms'.format(len(arms)))
    return [arm.reprojected_log_spiral for arm in arms]
def get_gal_pa(subject_id):
    try:
        p = Pipeline.load('lib/pipelines/{}.json'.format(subject_id))
    except FileNotFoundError:
        drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
        gal, angle = gu.get_galaxy_and_angle(subject_id)
        pic_array, deprojected_image = gu.get_image(gal, subject_id, angle)
        p = Pipeline(drawn_arms,
                     phi=angle,
                     ba=gal['PETRO_BA90'],
                     image_size=pic_array.shape[0])
    arms = (Arm.load(os.path.join('lib/spiral_arms', f))
            for f in os.listdir('lib/spiral_arms')
            if re.match('^{}-[0-9]+.pickle$'.format(subject_id), f))
    arms = [arm for arm in arms if not arm.FLAGGED_AS_BAD]

    pa = np.zeros(len(arms))
    sigma_pa = np.zeros(pa.shape)
    length = np.zeros(pa.shape)
    for i, arm in enumerate(arms):
        pa[i] = arm.pa
        length[i] = arm.length
        sigma_pa[i] = arm.sigma_pa
    if len(arms) == 0:
        return (np.nan, np.nan,
                np.stack((np.tile(subject_id, len(pa)), pa, sigma_pa, length),
                         axis=1))
    combined_pa = (pa * length).sum() / length.sum()
    combined_sigma_pa = np.sqrt((length**2 * sigma_pa**2).sum()) / length.sum()
    return (
        combined_pa,
        combined_sigma_pa,
        np.stack((np.tile(subject_id, len(pa)), pa, sigma_pa, length), axis=1),
    )
def make_combined_arms():
    bar = Bar('Obtaining combined spirals',
              max=len(dr8ids), suffix='%(percent).1f%% - %(eta)ds')
    for i in range(len(dr8ids)):
        original_id = ss_ids[i]
        validation_id = validation_ids[i]
        gal, angle = gu.get_galaxy_and_angle(original_id)
        original_drawn_arms = gu.get_drawn_arms(original_id)
        validation_drawn_arms = gu.get_drawn_arms(validation_id)
        drawn_arms = np.array(
            list(original_drawn_arms) + list(validation_drawn_arms),
        )
        p = Pipeline(drawn_arms, phi=angle, ba=gal['PETRO_BA90'],
                     image_size=512, distances=None, parallel=True)
        arms = p.get_arms()
        for j, arm in enumerate(arms):
            arm.save('lib/duplicate_spiral_arms/{}-{}'.format(dr8ids[i], j))
        bar.next()
    bar.finish()
Exemple #4
0
def get_spiral_arms(subject_id, should_recreate=True):
    if (
        (not os.path.exists('lib/pipelines/{}.json'.format(subject_id)))
        or should_recreate
    ):
        gal, angle = gu.get_galaxy_and_angle(subject_id)
        drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
        p = Pipeline(drawn_arms, phi=angle, ba=gal['PETRO_BA90'],
                     image_size=512, parallel=True)
        p.save('lib/pipelines/{}.json'.format(subject_id))
        arms = p.get_arms()
        for i, arm in enumerate(arms):
            arm.save('lib/spiral_arms/{}-{}'.format(subject_id, i))
        return arms
    else:
        arm_files = [
            os.path.join('lib/spiral_arms', i)
            for i in os.listdir('lib/spiral_arms')
            if str(subject_id) in i
        ]
        return [Arm.load(a) for a in arm_files]
Exemple #5
0
            res['validation_bulge_ba'] = v_bulge['axRatio']
            res['original_bulge_reff'] = o_bulge['rEff']
            res['validation_bulge_reff'] = v_bulge['rEff']
        if both_have_bars:
            o_bar = ash.sanitize_param_dict(original_components['bar'])
            v_bar = ash.sanitize_param_dict(validation_components['bar'])
            res['original_bar_ba'] = o_bar['axRatio']
            res['validation_bar_ba'] = v_bar['axRatio']
            res['original_bar_reff'] = o_bar['rEff']
            res['validation_bar_reff'] = v_bar['rEff']

        original_drawn_arms = gu.get_drawn_arms(original_id)
        validation_drawn_arms = gu.get_drawn_arms(validation_id)

        try:
            original_p = Pipeline.load(
                'lib/pipelines/{}.json'.format(original_id))
            original_arms = (
                Arm.load(os.path.join('lib/spiral_arms', i))
                for i in os.listdir('lib/spiral_arms')
                if re.match('^{}-[0-9]+.pickle$'.format(original_id), i))
            original_arms = [
                arm for arm in original_arms if not arm.FLAGGED_AS_BAD
            ]
        except IOError as e:
            print(e)
            original_p = Pipeline(original_drawn_arms,
                                  phi=angle,
                                  ba=gal['PETRO_BA90'],
                                  image_size=512,
                                  parallel=True)
            original_arms = original_p.get_arms()
def make_comparison(dr8id, ss_id, val_id):
    comp_file = 'model-variances/{}_components.pickle'.format(dr8id)
    pa_file = 'model-variances/{}_pa.pickle'.format(dr8id)
    if os.path.isfile(comp_file) and os.path.isfile(pa_file):
        return
    all_cls = gu.classifications.query(
        '(subject_ids == {}) or (subject_ids == {})'.format(ss_id, val_id))
    all_models = all_cls['annotations'].apply(json.loads).apply(
        ash.remove_scaling).apply(pa.parse_annotation)
    all_geoms = pd.DataFrame(all_models.apply(gas.get_geoms).values.tolist(),
                             columns=('disk', 'bulge', 'bar'))

    ss = ShuffleSplit(n_splits=20, test_size=0.5, random_state=0)
    split_models = []
    pas = []

    gal, angle = gu.get_galaxy_and_angle(ss_id)

    bar = Bar(str(dr8id), max=ss.n_splits, suffix='%(percent).1f%% - %(eta)ds')
    for i, (train_index, _) in enumerate(ss.split(all_geoms)):
        models = all_models.iloc[train_index]
        drawn_arms = get_drawn_arms((ss_id, val_id), all_cls.iloc[train_index])
        if len(drawn_arms) > 1:
            p = Pipeline(drawn_arms,
                         phi=angle,
                         ba=gal['PETRO_BA90'],
                         image_size=512,
                         parallel=True)
            pas.append(p.get_pitch_angle(p.get_arms()))
        else:
            pas.append((np.nan, np.nan))
        geoms = all_geoms.iloc[train_index]
        labels = list(map(np.array, gas.cluster_components(geoms)))
        comps = gas.get_aggregate_components(geoms, models, labels)
        aggregate_disk, aggregate_bulge, aggregate_bar = comps
        split_models.append({
            'disk': aggregate_disk if aggregate_disk else None,
            'bulge': aggregate_bulge if aggregate_bulge else None,
            'bar': aggregate_bar if aggregate_bar else None,
        })
        bar.next()
    bar.finish()
    splits_df = []
    for model in split_models:
        model_comps = {}
        for key in ('disk', 'bulge', 'bar'):
            if model.get(key, None) is None:
                model[key] = {}
            mu = model[key].get('mu', (np.nan, np.nan))
            model_comps['{}-mux'.format(key)] = mu[0]
            model_comps['{}-muy'.format(key)] = mu[1]
            for param in ('roll', 'rEff', 'axRatio', 'i0', 'n', 'c'):
                model_comps['{}-{}'.format(key, param)] = (model[key].get(
                    param, np.nan))
        splits_df.append(model_comps)
    splits_df = pd.DataFrame(splits_df)

    pas = pd.DataFrame(pas,
                       columns=('pa', 'sigma_pa'),
                       index=pd.Series(range(len(pas)), name='split_index'))
    splits_df.to_pickle(comp_file)
    pas.to_pickle(pa_file)
Exemple #7
0
def main(mangaid, subject_id):
    gal, angle = gu.get_galaxy_and_angle(subject_id)
    unit_converter = convert_arcsec_to_km(gal)
    df = read_file(mangaid)
    invalid_mask = df.values == -9999.0
    mask = np.any(invalid_mask, axis=1)
    df.iloc[mask] = np.nan
    df = df.dropna()
    df['R-arcsec'] = df['R']
    df['R'] = unit_converter(df['R'])
    scale = 4 * float(gal['PETRO_THETA'])
    zoo_coords_r = df['R-arcsec'].values / scale
    keys = (
        'GAS_IC-V',
        'GAS___-V',
        'BTH_IC-V',
        'BTH___-V',
    )
    labels = (
        r'$H_\alpha$ velocity, fixed center & inclination',
        r'$H_\alpha$ velocity, varying center & inclination',
        r'$H_\alpha$ and stellar velocity, fixed center & inclination',
        r'$H_\alpha$ and stellar velocity, varying centre and inclination',
    )
    drawn_arms = gu.get_drawn_arms(subject_id, gu.classifications)
    arm_pipeline = Pipeline(drawn_arms,
                            phi=angle,
                            ba=gal['PETRO_BA90'],
                            image_size=512,
                            parallel=True)
    arms = arm_pipeline.get_arms()
    gzb_pa, gzb_sigma_pa = arm_pipeline.get_pitch_angle(arms)
    arm_details = [{
        'pa':
        arm.pa,
        'sigma_pa':
        arm.sigma_pa,
        'min_r':
        unit_converter(
            np.linalg.norm(arm.log_spiral - (256, 256), axis=1).min() *
            float(gal['PETRO_THETA']) * 4 / 512),
        'max_r':
        unit_converter(
            np.linalg.norm(arm.log_spiral - (256, 256), axis=1).max() *
            float(gal['PETRO_THETA']) * 4 / 512)
    } for arm in arms]
    min_r = min(a['min_r'] for a in arm_details)
    max_r = max(a['max_r'] for a in arm_details)
    fitted = {}
    fig, ax = plt.subplots(figsize=(8, 6))
    sa_pas = []
    sa_pa_datas = []
    for i, (key, label) in enumerate(zip(keys, labels)):
        f = tanh_model(df['R'].values, df[key].values)
        p = least_squares(f, (160, 1E-17), x_scale=(10, 1E-17))['x']
        fitted[key] = f(p) + df[key].values
        # Calculate shear from analytic solve of dln(Ω)/dln(R)
        shear = shear_from_tanh(p[1], df['R'].values)
        omega = df[key] / (2 * np.pi * df['R'])
        shear_data = get_shear(omega[:-1], df['R'].values[:-1])

        plt.plot(df['R'], shear, c='C{}'.format(i % 10), label=label)
        plt.plot(np.stack((df['R'][:-1], df['R'][1:])).mean(axis=0),
                 shear_data,
                 '--',
                 c='C{}'.format(i % 10))

        sa_pa = np.rad2deg(get_predicted_pa(shear))
        sa_pa_data = np.rad2deg(get_predicted_pa(shear_data))
        sa_pas.append(sa_pa)
        sa_pa_datas.append(sa_pa_data)
        print('For key: {}'.format(key))
        msk = (df['R'] > min_r) & (df['R'] < max_r)
        print('\tRotation-predicted: {:.4f}°'.format(sa_pa[msk].mean()))
        print('\tGZB measured PA: {:.4f} ± {:.4f}°'.format(
            gzb_pa, gzb_sigma_pa))

    plt.plot([], [], 'k-', label=r'Analytic differentiation')
    plt.plot([], [], 'k--', label='Numerical differentiation')

    plt.xlabel('Distance from galaxy centre [km]')
    plt.ylabel(r'Shear rate, $\Gamma$')
    plt.legend()
    plt.savefig('{}_shear.pdf'.format(mangaid), bbox_inches='tight')
    plt.close()

    np.save('pavr', np.stack((zoo_coords_r, sa_pas[0]), axis=1))

    imshow_kwargs = {
        'cmap': 'gray',
        'origin': 'lower',
        'extent': [-0.5 * scale, 0.5 * scale] * 2,
    }
    pic_array, _ = gu.get_image(gal, subject_id, angle)
    fig, ax = plt.subplots(ncols=1, figsize=(5, 5))
    plt.imshow(pic_array, **imshow_kwargs)
    for i, arm in enumerate(arms):
        varying_arm_t = fit_varying_pa(arm, zoo_coords_r,
                                       np.stack(sa_pas).mean(axis=0))
        t_predict = np.linspace(varying_arm_t.min(), varying_arm_t.max(), 100)
        f = interp1d(varying_arm_t, zoo_coords_r)
        varying_arm = xy_from_r_theta(f(t_predict), t_predict)

        log_spiral = xy_from_r_theta(*np.flipud(arm.polar_logsp))
        plt.plot(*arm.deprojected_coords.T * scale, '.', markersize=1, alpha=1)
        plt.plot(*log_spiral * scale, c='r', linewidth=3, alpha=0.8)
        plt.plot(*varying_arm * scale, c='g', linewidth=3, alpha=0.8)
    # plots for legend
    plt.plot([], [],
             c='g',
             linewidth=3,
             alpha=0.8,
             label='Swing-amplified spiral')
    plt.plot([], [], c='r', linewidth=3, alpha=0.8, label='Logarithmic spiral')
    plt.axis('equal')
    plt.xlabel('Arcseconds from galaxy centre')
    plt.ylabel('Arcseconds from galaxy centre')
    plt.xlim(-25, 25)
    plt.ylim(-25, 25)
    plt.legend()
    plt.savefig('{}_varying-pa.pdf'.format(mangaid), bbox_inches='tight')
    plt.close()
    return

    fig, ax = plt.subplots(figsize=(8, 6))
    for sa_pa, label in zip(sa_pas, labels):
        plt.plot(df['R'], sa_pa, label=label)
    for row in arm_details:
        plt.hlines(row['pa'], row['min_r'], row['max_r'])
        plt.fill_between(
            np.linspace(row['min_r'], row['max_r'], 2),
            row['pa'] - row['sigma_pa'],
            row['pa'] + row['sigma_pa'],
            color='k',
            alpha=0.2,
        )
    plt.legend()
    plt.xlabel('Distance from galaxy centre [km]')
    plt.ylabel('Pitch angle [degrees]')
    plt.savefig('{}_pa.pdf'.format(mangaid), bbox_inches='tight')
    plt.close()

    fig, ax = plt.subplots(figsize=(8, 6))
    # df.plot('R', keys, label=labels, ax=ax)
    for i, key in enumerate(keys):
        plt.fill_between(
            df['R'].values,
            df[key].values - df[key + 'e'].values,
            df[key].values + df[key + 'e'].values,
            color='C{}'.format(i % 10),
            alpha=0.1,
        )
        plt.plot(df['R'].values, df[key].values, '--', c='C{}'.format(i % 10))
        plt.plot(df['R'].values, fitted[key], c='C{}'.format(i % 10))
    for i, label in enumerate(labels):
        plt.plot([], [], c='C{}'.format(i % 10), label=label)
    plt.plot([], [], 'k-', label=r'$A\tanh(bR)$ model')
    plt.plot([], [], 'k--', label='Data')
    plt.legend()
    plt.xlabel('Distance from galaxy centre [km]')
    plt.ylabel(r'Rotational velocity [$\mathrm{km}\mathrm{s}^{-1}$]')
    plt.savefig('{}_rotational-velocity_2.pdf'.format(mangaid),
                bbox_inches='tight')
    plt.close()