def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits ARIMA models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """
        # Get the logger if it exists
        logger = None
        tmp_folder = str(uuid.uuid4()) + "_arima_folder/"
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Import the ARIMA python module
        pm = importlib.import_module('pmdarima')
        # Init models
        self.models = {}
        # Convert to pandas
        X = X.to_pandas()
        XX = X[self.tgc].copy()
        XX['y'] = np.array(y)
        self.nan_value = np.mean(y)
        self.ntrain = X.shape[0]

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        # Prepare for multi processing
        num_tasks = len(XX_grp)

        def processor(out, res):
            out[res[0]] = res[1]

        pool_to_use = small_job_pool
        loggerinfo(
            logger,
            "Arima will use {} workers for parallel processing".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)

        # Build 1 ARIMA model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just say where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups fitted" %
                    (100 * (_i_g + 1) // nb_groups))

            X_path = os.path.join(tmp_folder,
                                  "autoarima_X" + str(uuid.uuid4()))
            X = X.reset_index(drop=True)
            save_obj(X, X_path)
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            args = (X_path, grp_hash, self.time_column, tmp_folder)
            kwargs = {}
            pool.submit_tryget(None,
                               MyParallelAutoArimaTransformer_fit_async,
                               args=args,
                               kwargs=kwargs,
                               out=self.models)
        pool.finish()

        for k, v in self.models.items():
            self.models[k] = load_obj(v) if v is not None else None
            remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        If self.is_train exists, it means we are doing in-sample predictions
        if it does not then we Arima is used to predict the future
        :param X: Datatable Frame containing the features
        :return: ARIMA predictions
        """
        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        X = X.to_pandas()
        XX = X[self.tgc].copy()
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        assert len(XX_grp) > 0
        num_tasks = len(XX_grp)

        def processor(out, res):
            out.append(res)

        pool_to_use = small_job_pool
        loggerinfo(logger,
                   "Arima will use {} workers for transform".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)

        XX_paths = []
        model_paths = []
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just print where we are in the process of fitting models
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups transformed" %
                    (100 * (_i_g + 1) // nb_groups))

            # Create time group key to store and retrieve fitted models
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            # Create file path to store data and pass it to the fitting pool
            X_path = os.path.join(tmp_folder,
                                  "autoarima_Xt" + str(uuid.uuid4()))

            # Commented for performance, uncomment for debug
            # print("ARIMA - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            if grp_hash in self.models:
                model = self.models[grp_hash]
                model_path = os.path.join(
                    tmp_folder, "autoarima_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.nan_value,
                        hasattr(self, 'is_train'), self.time_column,
                        self.pred_gap, tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyParallelAutoArimaTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)
            else:
                # Don't go through pools
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                  columns=['yhat'])  # unseen groups
                # Sync indices
                XX.index = X.index
                save_obj(XX, X_path)
                XX_paths.append(X_path)
        pool.finish()
        XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths),
                       axis=0).sort_index()
        for p in XX_paths + model_paths:
            remove(p)

        self._clean_tmp_folder(logger, tmp_folder)

        return XX
Exemple #3
0
    def fit(self,
            X,
            y,
            sample_weight=None,
            eval_set=None,
            sample_weight_eval_set=None,
            **kwargs):

        # Get TGC and time column
        self.tgc = self.params_base.get('tgc', None)
        self.time_column = self.params_base.get('time_column', None)
        self.nan_value = np.mean(y)
        self.cap = np.max(
            y
        ) * 1.5  # TODO Don't like this we should compute a cap from average yearly growth
        self.prior = np.mean(y)

        if self.time_column is None:
            self.time_column = self.tgc[0]

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)
        loggerinfo(
            logger,
            "Start Fitting Prophet Model with params : {}".format(self.params))

        # Get temporary folders for multi process communication
        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Convert to pandas
        XX = X[:, self.tgc].to_pandas()
        XX = XX.replace([None, np.nan], 0)
        XX.rename(columns={self.time_column: "ds"}, inplace=True)
        # Make target available in the Frame
        XX['y'] = np.array(y)
        # Set target prior
        self.nan_value = np.mean(y)

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        self.models = {}
        self.priors = {}

        # Prepare for multi processing
        num_tasks = len(XX_grp)

        def processor(out, res):
            out[res[0]] = res[1]

        pool_to_use = small_job_pool
        loggerdebug(logger,
                    "Prophet will use {} workers for fitting".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)

        # Fit 1 FB Prophet model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just log where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "FB Prophet : %d%% of groups fitted" %
                    (100 * (_i_g + 1) // nb_groups))

            X_path = os.path.join(tmp_folder,
                                  "fbprophet_X" + str(uuid.uuid4()))
            X = X.reset_index(drop=True)
            save_obj(X, X_path)
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))

            self.priors[grp_hash] = X['y'].mean()

            args = (X_path, grp_hash, tmp_folder, self.params, self.cap)
            kwargs = {}
            pool.submit_tryget(None,
                               MyParallelProphetTransformer_fit_async,
                               args=args,
                               kwargs=kwargs,
                               out=self.models)
        pool.finish()
        for k, v in self.models.items():
            self.models[k] = load_obj(v) if v is not None else None
            remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return None
Exemple #4
0
    def predict(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        :param X: Datatable Frame containing the features
        :return: FB Prophet predictions
        """
        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        if self.tgc is None or not all([x in X.names for x in self.tgc]):
            loggerdebug(logger, "Return 0 predictions")
            return np.ones(X.shape[0]) * self.nan_value

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        XX = X[:, self.tgc].to_pandas()
        XX = XX.replace([None, np.nan], 0)
        XX.rename(columns={self.time_column: "ds"}, inplace=True)

        if self.params["growth"] == "logistic":
            XX["cap"] = self.cap

        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]
        assert len(XX_grp) > 0
        num_tasks = len(XX_grp)

        def processor(out, res):
            out.append(res)

        pool_to_use = small_job_pool
        loggerdebug(logger,
                    "Prophet will use {} workers for transform".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)
        XX_paths = []
        model_paths = []
        nb_groups = len(XX_grp)
        print("Nb Groups = ", nb_groups)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Log where we are in the transformation of the dataset
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "FB Prophet : %d%% of groups transformed" %
                    (100 * (_i_g + 1) // nb_groups))

            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            X_path = os.path.join(tmp_folder,
                                  "fbprophet_Xt" + str(uuid.uuid4()))
            # Commented for performance, uncomment for debug
            # print("prophet - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            if grp_hash in self.models:
                model = self.models[grp_hash]
                model_path = os.path.join(
                    tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.priors[grp_hash], tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyParallelProphetTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)
            else:
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                  columns=['yhat'])  # unseen groups
                XX.index = X.index
                save_obj(XX, X_path)
                XX_paths.append(X_path)
        pool.finish()
        XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths),
                       axis=0).sort_index()
        for p in XX_paths + model_paths:
            remove(p)

        self._clean_tmp_folder(logger, tmp_folder)

        return XX['yhat'].values
Exemple #5
0
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits FB Prophet models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir,
                username=self.context.username,
            )

        try:
            # Add value of prophet_top_n in recipe_dict variable inside of config.toml file
            # eg1: recipe_dict="{'prophet_top_n': 200}"
            # eg2: recipe_dict="{'prophet_top_n':10}"
            self.top_n = config.recipe_dict['prophet_top_n']
        except KeyError:
            self.top_n = 50

        loggerinfo(
            logger,
            f"Prophet will use {self.top_n} groups as well as average target data."
        )

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        # Add target, Label encoder is only used for Classif. which we don't support...
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        X['y'] = np.array(y)

        self.nan_value = X['y'].mean()

        # Change date feature name to match Prophet requirements
        X.rename(columns={self.time_column: "ds"}, inplace=True)

        # Create a general scale now that will be used for unknown groups at prediction time
        # Can we do smarter than that ?
        self.general_scaler = MinMaxScaler().fit(
            X[['y', 'ds']].groupby('ds').median().values)

        # Go through groups and standard scale them
        if len(tgc_wo_time) > 0:
            X_groups = X.groupby(tgc_wo_time)
        else:
            X_groups = [([None], X)]

        self.scalers = {}
        scaled_ys = []
        print(f'{datetime.now()} Start of group scaling')

        for key, X_grp in X_groups:
            # Create dict key to store the min max scaler
            grp_hash = self.get_hash(key)
            # Scale target for current group
            self.scalers[grp_hash] = MinMaxScaler()
            y_skl = self.scalers[grp_hash].fit_transform(X_grp[['y']].values)
            # Put back in a DataFrame to keep track of original index
            y_skl_df = pd.DataFrame(y_skl, columns=['y'])
            # (0, 'A') (1, 4) (100, 1) (100, 1)
            # print(grp_hash, X_grp.shape, y_skl.shape, y_skl_df.shape)

            y_skl_df.index = X_grp.index
            scaled_ys.append(y_skl_df)

        print(f'{datetime.now()} End of group scaling')
        # Set target back in original frame but keep original
        X['y_orig'] = X['y']
        X['y'] = pd.concat(tuple(scaled_ys), axis=0)

        # Now Average groups
        X_avg = X[['ds', 'y']].groupby('ds').mean().reset_index()

        # Send that to Prophet
        params = {
            "country_holidays": self.country_holidays,
            "monthly_seasonality": self.monthly_seasonality
        }
        mod = importlib.import_module('fbprophet')
        Prophet = getattr(mod, "Prophet")
        self.model = Prophet(yearly_seasonality=True,
                             weekly_seasonality=True,
                             daily_seasonality=True)

        if params["country_holidays"] is not None:
            self.model.add_country_holidays(
                country_name=params["country_holidays"])
        if params["monthly_seasonality"]:
            self.model.add_seasonality(name='monthly',
                                       period=30.5,
                                       fourier_order=5)

        with suppress_stdout_stderr():
            self.model.fit(X[['ds', 'y']])

        print(f'{datetime.now()} General Model Fitted')

        self.top_groups = None
        if len(tgc_wo_time) > 0:
            if self.top_n > 0:
                top_n_grp = X.groupby(tgc_wo_time).size().sort_values(
                ).reset_index()[tgc_wo_time].iloc[-self.top_n:].values
                self.top_groups = [
                    '_'.join(map(str, key)) for key in top_n_grp
                ]

        if self.top_groups:
            self.grp_models = {}
            self.priors = {}

            # Prepare for multi processing
            num_tasks = len(self.top_groups)

            def processor(out, res):
                out[res[0]] = res[1]

            pool_to_use = small_job_pool
            loggerinfo(logger,
                       f"Prophet will use {n_jobs} workers for fitting.")
            loggerinfo(
                logger, "Prophet parameters holidays {} / monthly {}".format(
                    self.country_holidays, self.monthly_seasonality))
            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=num_tasks,
                               max_workers=n_jobs)
            #
            # Fit 1 FB Prophet model per time group columns
            nb_groups = len(X_groups)

            # Put y back to its unscaled value for top groups
            X['y'] = X['y_orig']

            for _i_g, (key, X) in enumerate(X_groups):
                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups fitted" %
                        (100 * (_i_g + 1) // nb_groups))

                X_path = os.path.join(tmp_folder,
                                      "fbprophet_X" + str(uuid.uuid4()))
                X = X.reset_index(drop=True)
                save_obj(X, X_path)

                grp_hash = self.get_hash(key)

                if grp_hash not in self.top_groups:
                    continue

                self.priors[grp_hash] = X['y'].mean()

                params = {
                    "country_holidays": self.country_holidays,
                    "monthly_seasonality": self.monthly_seasonality
                }

                args = (X_path, grp_hash, tmp_folder, params)
                kwargs = {}
                pool.submit_tryget(None,
                                   MyParallelProphetTransformer_fit_async,
                                   args=args,
                                   kwargs=kwargs,
                                   out=self.grp_models)
            pool.finish()

            for k, v in self.grp_models.items():
                self.grp_models[k] = load_obj(v) if v is not None else None
                remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
Exemple #6
0
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        :param X: Datatable Frame containing the features
        :return: FB Prophet predictions
        """
        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        # Change date feature name to match Prophet requirements
        X.rename(columns={self.time_column: "ds"}, inplace=True)

        # Predict y using unique dates
        X_time = X[['ds']].groupby('ds').first().reset_index()
        with suppress_stdout_stderr():
            y_avg = self.model.predict(X_time)[['ds', 'yhat']]

        # Prophet transforms the date column to datetime so we need to transfrom that to merge back
        X_time.sort_values('ds', inplace=True)
        X_time['yhat'] = y_avg['yhat']
        X_time.sort_index(inplace=True)

        # Merge back into original frame on 'ds'
        # pd.merge wipes the index ... so keep it to provide it again
        indices = X.index
        X = pd.merge(left=X, right=X_time[['ds', 'yhat']], on='ds', how='left')
        X.index = indices

        # Go through groups and recover the scaled target for knowed groups
        if len(tgc_wo_time) > 0:
            X_groups = X.groupby(tgc_wo_time)
        else:
            X_groups = [([None], X)]

        inverted_ys = []
        for key, X_grp in X_groups:
            grp_hash = self.get_hash(key)

            # Scale target for current group
            if grp_hash in self.scalers.keys():
                inverted_y = self.scalers[grp_hash].inverse_transform(
                    X_grp[['yhat']])
            else:
                inverted_y = self.general_scaler.inverse_transform(
                    X_grp[['yhat']])

            # Put back in a DataFrame to keep track of original index
            inverted_df = pd.DataFrame(inverted_y, columns=['yhat'])
            inverted_df.index = X_grp.index
            inverted_ys.append(inverted_df)

        XX_general = pd.concat(tuple(inverted_ys), axis=0).sort_index()

        if self.top_groups:
            # Go though the groups and predict only top
            XX_paths = []
            model_paths = []

            def processor(out, res):
                out.append(res)

            num_tasks = len(self.top_groups)
            pool_to_use = small_job_pool
            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=num_tasks,
                               max_workers=n_jobs)

            nb_groups = len(X_groups)
            for _i_g, (key, X_grp) in enumerate(X_groups):

                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups predicted" %
                        (100 * (_i_g + 1) // nb_groups))

                # Create dict key to store the min max scaler
                grp_hash = self.get_hash(key)
                X_path = os.path.join(tmp_folder,
                                      "fbprophet_Xt" + str(uuid.uuid4()))

                if grp_hash not in self.top_groups:
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan),
                                      columns=['yhat'])  # unseen groups
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                if self.grp_models[grp_hash] is None:
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan),
                                      columns=['yhat'])  # unseen groups
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                model = self.grp_models[grp_hash]
                model_path = os.path.join(
                    tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X_grp, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.priors[grp_hash], tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyParallelProphetTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)

            pool.finish()
            XX_top_groups = pd.concat((load_obj(XX_path)
                                       for XX_path in XX_paths),
                                      axis=0).sort_index()
            for p in XX_paths + model_paths:
                remove(p)

        self._clean_tmp_folder(logger, tmp_folder)

        features_df = pd.DataFrame()
        features_df[self.display_name + '_GrpAvg'] = XX_general['yhat']

        if self.top_groups:
            features_df[self.display_name +
                        f'_Top{self.top_n}Grp'] = XX_top_groups['yhat']

        self._output_feature_names = list(features_df.columns)
        self._feature_desc = list(features_df.columns)

        return features_df
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        :param X: Datatable Frame containing the features
        :return: FB Prophet predictions
        """
        # Get the logger if it exists
        logger = self.get_experiment_logger()

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))

        # Change date feature name to match Prophet requirements
        X = self.convert_to_prophet(X)

        y_predictions = self.predict_with_average_model(X, tgc_wo_time)
        y_predictions.columns = ['average_pred']

        # Go through groups
        for grp_col in tgc_wo_time:
            # Get the unique dates to be predicted
            X_groups = X[['ds', grp_col]].groupby(grp_col)

            # Go though the groups and predict only top
            XX_paths = []
            model_paths = []

            def processor(out, res):
                out.append(res)

            num_tasks = len(X_groups)
            pool_to_use = small_job_pool
            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=num_tasks,
                               max_workers=n_jobs)

            for _i_g, (key, X_grp) in enumerate(X_groups):

                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, num_tasks // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups predicted" %
                        (100 * (_i_g + 1) // num_tasks))

                # Create dict key to store the min max scaler
                grp_hash = self.get_hash(key)
                X_path = os.path.join(tmp_folder,
                                      "fbprophet_Xt" + str(uuid.uuid4()))

                if grp_hash not in self.grp_models[grp_col]:
                    # unseen groups
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan),
                                      columns=['yhat'])
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                if self.grp_models[grp_col][grp_hash] is None:
                    # known groups but not enough train data
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan),
                                      columns=['yhat'])
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                model = self.grp_models[grp_col][grp_hash]
                model_path = os.path.join(
                    tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X_grp, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.priors[grp_col][grp_hash],
                        tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyProphetOnSingleGroupsTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)

            pool.finish()
            y_predictions[f'{grp_col}_pred'] = pd.concat(
                (load_obj(XX_path) for XX_path in XX_paths),
                axis=0).sort_index()
            for p in XX_paths + model_paths:
                remove(p)

        # Now we can invert scale
        # But first get rid of NaNs
        for grp_col in tgc_wo_time:
            # Add time group to the predictions, will be used to invert scaling
            y_predictions[grp_col] = X[grp_col]
            # Fill NaN
            y_predictions[f'{grp_col}_pred'] = y_predictions[
                f'{grp_col}_pred'].fillna(y_predictions['average_pred'])

        # Go through groups and recover the scaled target for knowed groups
        if len(tgc_wo_time) > 0:
            X_groups = y_predictions.groupby(tgc_wo_time)
        else:
            X_groups = [([None], y_predictions)]

        for _f in [f'{grp_col}_pred'
                   for grp_col in tgc_wo_time] + ['average_pred']:
            inverted_ys = []
            for key, X_grp in X_groups:
                grp_hash = self.get_hash(key)
                # Scale target for current group
                if grp_hash in self.scalers.keys():
                    inverted_y = self.scalers[grp_hash].inverse_transform(
                        X_grp[[_f]])
                else:
                    inverted_y = self.general_scaler.inverse_transform(
                        X_grp[[_f]])

                # Put back in a DataFrame to keep track of original index
                inverted_df = pd.DataFrame(inverted_y, columns=[_f])
                inverted_df.index = X_grp.index
                inverted_ys.append(inverted_df)
            y_predictions[_f] = pd.concat(tuple(inverted_ys),
                                          axis=0).sort_index()[_f]

        self._clean_tmp_folder(logger, tmp_folder)

        y_predictions.drop(tgc_wo_time, axis=1, inplace=True)

        self._output_feature_names = [
            f'{self.display_name}_{_f}' for _f in y_predictions
        ]
        self._feature_desc = [
            f'{self.display_name}_{_f}' for _f in y_predictions
        ]

        return y_predictions
    def fit(self,
            X,
            y,
            sample_weight=None,
            eval_set=None,
            sample_weight_eval_set=None,
            **kwargs):

        # Get TGC and time column
        self.tgc = self.params_base.get('tgc', None)
        self.time_column = self.params_base.get('time_column', None)
        self.nan_value = np.mean(y)
        self.cap = np.max(
            y
        ) * 1.5  # TODO Don't like this we should compute a cap from average yearly growth
        self.prior = np.mean(y)

        if self.time_column is None:
            self.time_column = self.tgc[0]

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        loggerinfo(
            logger,
            "Start Fitting Prophet Model with params : {}".format(self.params))

        try:
            # Add value of prophet_top_n in recipe_dict variable inside of config.toml file
            # eg1: recipe_dict="{'prophet_top_n': 200}"
            # eg2: recipe_dict="{'prophet_top_n':10}"
            self.top_n = config.recipe_dict['prophet_top_n']
        except KeyError:
            self.top_n = 50

        loggerinfo(
            logger,
            f"Prophet will use {self.top_n} groups as well as average target data."
        )

        # Get temporary folders for multi process communication
        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        # Add target, Label encoder is only used for Classif. which we don't support...
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        X['y'] = np.array(y)

        self.nan_value = X['y'].mean()

        # Change date feature name to match Prophet requirements
        X.rename(columns={self.time_column: "ds"}, inplace=True)

        # Create a general scale now that will be used for unknown groups at prediction time
        # Can we do smarter than that ?
        general_scaler = MinMaxScaler().fit(
            X[['y', 'ds']].groupby('ds').median().values)

        # Go through groups and standard scale them
        if len(tgc_wo_time) > 0:
            X_groups = X.groupby(tgc_wo_time)
        else:
            X_groups = [([None], X)]

        scalers = {}
        scaled_ys = []

        print('Number of groups : ', len(X_groups))
        for g in tgc_wo_time:
            print(f'Number of groups in {g} groups : {X[g].unique().shape}')

        for key, X_grp in X_groups:
            # Create dict key to store the min max scaler
            grp_hash = self.get_hash(key)
            # Scale target for current group
            scalers[grp_hash] = MinMaxScaler()
            y_skl = scalers[grp_hash].fit_transform(X_grp[['y']].values)
            # Put back in a DataFrame to keep track of original index
            y_skl_df = pd.DataFrame(y_skl, columns=['y'])

            y_skl_df.index = X_grp.index
            scaled_ys.append(y_skl_df)

        # Set target back in original frame but keep original
        X['y_orig'] = X['y']
        X['y'] = pd.concat(tuple(scaled_ys), axis=0)

        # Now Average groups
        X_avg = X[['ds', 'y']].groupby('ds').mean().reset_index()

        # Send that to Prophet
        mod = importlib.import_module('fbprophet')
        Prophet = getattr(mod, "Prophet")
        nrows = X[['ds', 'y']].shape[0]
        n_changepoints = max(1, int(nrows * (2 / 3)))
        if n_changepoints < 25:
            model = Prophet(yearly_seasonality=True,
                            weekly_seasonality=True,
                            daily_seasonality=True,
                            n_changepoints=n_changepoints)
        else:
            model = Prophet(yearly_seasonality=True,
                            weekly_seasonality=True,
                            daily_seasonality=True)

        if self.params["country_holidays"] is not None:
            model.add_country_holidays(
                country_name=self.params["country_holidays"])
        if self.params["monthly_seasonality"]:
            model.add_seasonality(
                name='monthly',
                period=30.5,
                fourier_order=self.params["monthly_seasonality"])
        if self.params["quarterly_seasonality"]:
            model.add_seasonality(
                name='quarterly',
                period=92,
                fourier_order=self.params["quarterly_seasonality"])

        with suppress_stdout_stderr():
            model.fit(X[['ds', 'y']])

        top_groups = None
        if len(tgc_wo_time) > 0:
            if self.top_n > 0:
                top_n_grp = X.groupby(tgc_wo_time).size().sort_values(
                ).reset_index()[tgc_wo_time].iloc[-self.top_n:].values
                top_groups = ['_'.join(map(str, key)) for key in top_n_grp]

        grp_models = {}
        priors = {}
        if top_groups:
            # Prepare for multi processing
            num_tasks = len(top_groups)

            def processor(out, res):
                out[res[0]] = res[1]

            pool_to_use = small_job_pool
            loggerinfo(logger,
                       f"Prophet will use {n_jobs} workers for fitting.")

            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=num_tasks,
                               max_workers=n_jobs)
            #
            # Fit 1 FB Prophet model per time group columns
            nb_groups = len(X_groups)

            # Put y back to its unscaled value for top groups
            X['y'] = X['y_orig']

            for _i_g, (key, X) in enumerate(X_groups):
                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups fitted" %
                        (100 * (_i_g + 1) // nb_groups))

                X_path = os.path.join(tmp_folder,
                                      "fbprophet_X" + str(uuid.uuid4()))
                X = X.reset_index(drop=True)
                save_obj(X, X_path)

                grp_hash = self.get_hash(key)

                if grp_hash not in top_groups:
                    continue

                priors[grp_hash] = X['y'].mean()

                args = (X_path, grp_hash, tmp_folder, self.params, self.cap)
                kwargs = {}
                pool.submit_tryget(None,
                                   MyParallelProphetTransformer_fit_async,
                                   args=args,
                                   kwargs=kwargs,
                                   out=grp_models)
            pool.finish()

            for k, v in grp_models.items():
                grp_models[k] = load_obj(v) if v is not None else None
                remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        self.set_model_properties(
            model={
                'avg': model,
                'group': grp_models,
                'priors': priors,
                'topgroups': top_groups,
                'skl': scalers,
                'gen_scaler': general_scaler
            },
            features=self.tgc,  # Prophet uses time and timegroups
            importances=np.ones(len(self.tgc)),
            iterations=-1  # Does not have iterations
        )

        return None
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits FB Prophet models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """

        # Get the logger if it exists
        logger = self.get_experiment_logger()

        loggerinfo(
            logger,
            f"Prophet will use individual groups as well as average target data."
        )

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))

        X = self.convert_to_prophet(X)

        # Add target, Label encoder is only used for Classif. which we don't support...
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        X['y'] = np.array(y)

        self.prior_value = X['y'].mean()

        self.general_scaler = self.fit_scaler_to_median_target(X)

        X = self.scale_target_for_each_time_group(X, tgc_wo_time)

        self.avg_model = self.fit_prophet_model_on_average_target(X)

        # Go through individual time group columns and create avg models
        self.grp_models = {}
        self.priors = {}
        for grp_col in tgc_wo_time:
            self.grp_models[grp_col] = {}
            self.priors[grp_col] = {}

            X_groups = X[['ds', 'y', grp_col]].groupby(grp_col)

            nb_groups = len(X_groups)

            def processor(out, res):
                out[res[0]] = res[1]

            pool_to_use = small_job_pool
            loggerinfo(logger,
                       f"Prophet will use {n_jobs} workers for fitting.")
            loggerinfo(
                logger, "Prophet parameters holidays {} / monthly {}".format(
                    self.country_holidays, self.monthly_seasonality))
            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=nb_groups,
                               max_workers=n_jobs)

            for _i_g, (key, X_grp) in enumerate(X_groups):
                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups fitted" %
                        (100 * (_i_g + 1) // nb_groups))

                X_path = os.path.join(tmp_folder,
                                      "fbprophet_X" + str(uuid.uuid4()))

                # Save target average for current group
                grp_hash = self.get_hash(key)
                self.priors[grp_col][grp_hash] = X_grp['y'].mean()

                # Average by date
                X_grp_avg = X_grp.groupby('ds')['y'].mean().reset_index()

                save_obj(X_grp_avg, X_path)

                params = {
                    "country_holidays": self.country_holidays,
                    "monthly_seasonality": self.monthly_seasonality
                }

                args = (X_path, grp_hash, tmp_folder, params)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyProphetOnSingleGroupsTransformer_fit_async,
                    args=args,
                    kwargs=kwargs,
                    out=self.grp_models[grp_col])
            pool.finish()

            for k, v in self.grp_models[grp_col].items():
                self.grp_models[grp_col][k] = load_obj(
                    v) if v is not None else None
                remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
Exemple #10
0
    def fit(self, X: dt.Frame, y: np.array = None):
        """
        Fits ARIMA models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """
        # Get the logger if it exists
        logger = None
        tmp_folder = str(uuid.uuid4()) + "_arima_folder/"
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir
            )

            tmp_folder = self.context.experiment_tmp_dir + "/" + str(uuid.uuid4()) + "_arima_folder/"

        # Create a temp folder to store files used during multi processing experiment
        # This temp folder will be removed at the end of the process
        loggerinfo(logger, "Arima temp folder {}".format(tmp_folder))
        try:
            os.mkdir(tmp_folder)
        except PermissionError:
            # This not occur so log a warning
            loggerwarning(logger, "Arima was denied temp folder creation rights")
            tmp_folder = temporary_files_path + "/" + str(uuid.uuid4()) + "_arima_folder/"
            os.mkdir(tmp_folder)
        except  FileExistsError:
            # We should never be here since temp dir name is expected to be unique
            loggerwarning(logger, "Arima temp folder already exists")
            tmp_folder = self.context.experiment_tmp_dir + "/" + str(uuid.uuid4()) + "_arima_folder/"
            os.mkdir(tmp_folder)
        except:
            # Revert to temporary file path
            tmp_folder = temporary_files_path + "/" + str(uuid.uuid4()) + "_arima_folder/"
            os.mkdir(tmp_folder)

        # Import the ARIMA python module
        pm = importlib.import_module('pmdarima')
        # Init models
        self.models = {}
        # Convert to pandas
        X = X.to_pandas()
        XX = X[self.tgc].copy()
        XX['y'] = np.array(y)
        self.nan_value = np.mean(y)
        self.ntrain = X.shape[0]

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        # Prepare for multi processing
        num_tasks = len(XX_grp)

        def processor(out, res):
            out[res[0]] = res[1]

        pool_to_use = small_job_pool
        if hasattr(self, "params_base"):
            max_workers = self.params_base['n_jobs']
        else:
            loggerinfo(logger, "Custom Recipe does not have a params_base attribute")
            # Beware not to use the disable_gpus keyword here. looks like cython does not like it
            # max_workers = get_max_workers(True)
            # Just set default to 2
            max_workers = 2

        loggerinfo(logger, "Arima will use {} workers for parallel processing".format(max_workers))
        pool = pool_to_use(
            logger=None, processor=processor,
            num_tasks=num_tasks, max_workers=max_workers
        )

        # Build 1 ARIMA model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just say where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(logger, "Auto ARIMA : %d%% of groups fitted" % (100 * (_i_g + 1) // nb_groups))

            X_path = os.path.join(tmp_folder, "autoarima_X" + str(uuid.uuid4()))
            X = X.reset_index(drop=True)
            save_obj(X, X_path)
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            args = (X_path, grp_hash, self.time_column, tmp_folder)
            kwargs = {}
            pool.submit_tryget(None, MyParallelAutoArimaTransformer_fit_async, args=args, kwargs=kwargs,
                               out=self.models)
        pool.finish()

        for k, v in self.models.items():
            self.models[k] = load_obj(v) if v is not None else None
            remove(v)

        try:
            shutil.rmtree(tmp_folder)
            loggerinfo(logger, "Arima cleaned up temporary file folder.")
        except:
            loggerwarning(logger, "Arima could not delete the temporary file folder.")

        return self
Exemple #11
0
    def transform(self, X: dt.Frame):
        """
        Uses fitted models (1 per time group) to predict the target
        If self.is_train exists, it means we are doing in-sample predictions
        if it does not then we Arima is used to predict the future
        :param X: Datatable Frame containing the features
        :return: ARIMA predictions
        """
        # Get the logger if it exists
        logger = None
        tmp_folder = str(uuid.uuid4()) + "_arima_folder/"
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir
            )

            tmp_folder = self.context.experiment_tmp_dir + "/" + str(uuid.uuid4()) + "_arima_folder/"

        # Create a temp folder to store files used during multi processing experiment
        # This temp folder will be removed at the end of the process
        loggerinfo(logger, "Arima temp folder {}".format(tmp_folder))
        try:
            os.mkdir(tmp_folder)
        except PermissionError:
            # This not occur so log a warning
            loggerwarning(logger, "Arima was denied temp folder creation rights")
            tmp_folder = temporary_files_path + "/" + str(uuid.uuid4()) + "_arima_folder/"
            os.mkdir(tmp_folder)
        except  FileExistsError:
            # We should never be here since temp dir name is expected to be unique
            loggerwarning(logger, "Arima temp folder already exists")
            tmp_folder = self.context.experiment_tmp_dir + "/" + str(uuid.uuid4()) + "_arima_folder/"
            os.mkdir(tmp_folder)
        except:
            # Revert to temporary file path
            loggerwarning(logger, "Arima defaulted to create folder inside tmp directory.")
            tmp_folder = temporary_files_path + "/" + str(uuid.uuid4()) + "_arima_folder/"
            os.mkdir(tmp_folder)

        X = X.to_pandas()
        XX = X[self.tgc].copy()
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        assert len(XX_grp) > 0
        num_tasks = len(XX_grp)

        def processor(out, res):
            out.append(res)

        pool_to_use = small_job_pool
        pool = pool_to_use(logger=None, processor=processor, num_tasks=num_tasks)
        XX_paths = []
        model_paths = []
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just print where we are in the process of fitting models
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(logger, "Auto ARIMA : %d%% of groups transformed" % (100 * (_i_g + 1) // nb_groups))

            # Create time group key to store and retrieve fitted models
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            # Create file path to store data and pass it to the fitting pool
            X_path = os.path.join(tmp_folder, "autoarima_Xt" + str(uuid.uuid4()))

            # Commented for performance, uncomment for debug
            # print("ARIMA - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            if grp_hash in self.models:
                model = self.models[grp_hash]
                model_path = os.path.join(tmp_folder, "autoarima_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.nan_value, hasattr(self, 'is_train'), self.time_column, tmp_folder)
                kwargs = {}
                pool.submit_tryget(None, MyParallelAutoArimaTransformer_transform_async, args=args, kwargs=kwargs,
                                   out=XX_paths)
            else:
                # Don't go through pools
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value), columns=['yhat'])  # unseen groups
                # Sync indices
                XX.index = X.index
                save_obj(XX, X_path)
                XX_paths.append(X_path)
        pool.finish()
        XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths), axis=0).sort_index()
        for p in XX_paths + model_paths:
            remove(p)

        try:
            shutil.rmtree(tmp_folder)
            loggerinfo(logger, "Arima cleaned up temporary file folder.")
        except:
            loggerwarning(logger, "Arima could not delete the temporary file folder.")

        return XX
Exemple #12
0
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits FB Prophet models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir
            )

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Convert to pandas
        XX = X[:, self.tgc].to_pandas()
        XX = XX.replace([None, np.nan], 0)
        XX.rename(columns={self.time_column: "ds"}, inplace=True)
        # Make sure labales are numeric
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        XX['y'] = np.array(y)
        # Set target prior
        self.nan_value = np.mean(y)

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]
        self.models = {}
        self.priors = {}

        # Prepare for multi processing
        num_tasks = len(XX_grp)

        def processor(out, res):
            out[res[0]] = res[1]

        pool_to_use = small_job_pool
        loggerinfo(logger, "Prophet will use {} workers for fitting".format(n_jobs))
        pool = pool_to_use(
            logger=None, processor=processor,
            num_tasks=num_tasks, max_workers=n_jobs
        )

        # Fit 1 FB Prophet model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just log where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(logger, "FB Prophet : %d%% of groups fitted" % (100 * (_i_g + 1) // nb_groups))

            X_path = os.path.join(tmp_folder, "fbprophet_X" + str(uuid.uuid4()))
            X = X.reset_index(drop=True)
            save_obj(X, X_path)
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))

            self.priors[grp_hash] = X['y'].mean()

            args = (X_path, grp_hash, tmp_folder)
            kwargs = {}
            pool.submit_tryget(None, MyParallelProphetTransformer_fit_async, args=args, kwargs=kwargs, out=self.models)
        pool.finish()
        for k, v in self.models.items():
            self.models[k] = load_obj(v) if v is not None else None
            remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
Exemple #13
0
    def transform(self, X: dt.Frame):
        XX = X[:, self.tgc].to_pandas()
        XX = XX.replace([None, np.nan], 0)
        XX.rename(columns={self.time_column: "ds"}, inplace=True)
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]
        assert len(XX_grp) > 0
        num_tasks = len(XX_grp)

        def processor(out, res):
            out.append(res)

        pool_to_use = small_job_pool
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks)
        XX_paths = []
        model_paths = []
        nb_groups = len(XX_grp)
        print("Nb Groups = ", nb_groups)
        for _i_g, (key, X) in enumerate(XX_grp):
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                print(100 * (_i_g + 1) // nb_groups, " of Groups Transformed")
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            X_path = os.path.join(temporary_files_path,
                                  "fbprophet_Xt" + str(uuid.uuid4()))
            # Commented for performance, uncomment for debug
            # print("prophet - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            if grp_hash in self.models:
                model = self.models[grp_hash]
                model_path = os.path.join(
                    temporary_files_path,
                    "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.nan_value)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyParallelProphetTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)
            else:
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                  columns=['yhat'])  # unseen groups
                XX.index = X.index
                save_obj(XX, X_path)
                XX_paths.append(X_path)
        pool.finish()
        XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths),
                       axis=0).sort_index()
        for p in XX_paths + model_paths:
            remove(p)
        return XX