def reset_metric(self, episode):
     self._step_count = 0
     self._metric = None
     self._top_down_map = self.get_original_map()
     agent_position = self._sim.get_agent_state().position
     a_x, a_y = maps.to_grid(
         agent_position[0],
         agent_position[2],
         self._coordinate_min,
         self._coordinate_max,
         self._map_resolution,
     )
     self._previous_xy_location = (a_y, a_x)
     if self._config.DRAW_SHORTEST_PATH:
         # draw shortest path
         self._shortest_path_points = self._sim.get_straight_shortest_path_points(
             agent_position, episode.goals[0].position)
         self._shortest_path_points = [
             maps.to_grid(
                 p[0],
                 p[2],
                 self._coordinate_min,
                 self._coordinate_max,
                 self._map_resolution,
             )[::-1] for p in self._shortest_path_points
         ]
         maps.draw_path(
             self._top_down_map,
             self._shortest_path_points,
             maps.MAP_SHORTEST_PATH_COLOR,
             self.line_thickness,
         )
     # draw source and target points last to avoid overlap
     if self._config.DRAW_SOURCE_AND_TARGET:
         self.draw_source_and_target(episode)
    def draw_source_and_target(self, episode):
        # mark source point
        s_x, s_y = maps.to_grid(
            episode.start_position[0],
            episode.start_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )
        point_padding = 2 * int(
            np.ceil(self._map_resolution[0] / MAP_THICKNESS_SCALAR))
        self._top_down_map[s_x - point_padding:s_x + point_padding + 1,
                           s_y - point_padding:s_y + point_padding +
                           1, ] = maps.MAP_SOURCE_POINT_INDICATOR

        # mark target point
        t_x, t_y = maps.to_grid(
            episode.goals[0].position[0],
            episode.goals[0].position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )
        self._top_down_map[t_x - point_padding:t_x + point_padding + 1,
                           t_y - point_padding:t_y + point_padding +
                           1, ] = maps.MAP_TARGET_POINT_INDICATOR
def get_map(env, map_res):

    # top down map
    top_down_map = maps.get_topdown_map(env.sim,
                                        num_samples=1000000,
                                        map_resolution=(map_res, map_res))
    top_down_map, rmin, rmax, cmin, cmax = crop_map(top_down_map)

    # target/goal
    target_position = env.current_episode.goals[0].position
    target_position_grid = maps.to_grid(target_position[0], target_position[2],
                                        maps.COORDINATE_MIN,
                                        maps.COORDINATE_MAX,
                                        (map_res, map_res))

    # agent's current position   # to_grid converts real world (x,y) to pixel (x,y)
    agent_position = env.sim.get_agent_state().position
    agent_position_grid = maps.to_grid(agent_position[0], agent_position[2],
                                       maps.COORDINATE_MIN,
                                       maps.COORDINATE_MAX, (map_res, map_res))

    # grid offset for map
    agent_position_grid = (agent_position_grid[0] - rmin,
                           agent_position_grid[1] - cmin)
    target_position_grid = (target_position_grid[0] - rmin,
                            target_position_grid[1] - cmin)

    tdm = top_down_map.copy()

    # agent pos
    m1 = 4
    tdm[agent_position_grid[0] - m1:agent_position_grid[0] + m1,
        agent_position_grid[1] - m1:agent_position_grid[1] + m1] = 0

    # target pos
    m2 = 7
    tdm[target_position_grid[0] - m1:target_position_grid[0] + m1,
        target_position_grid[1] - m2:target_position_grid[1] + m2] = 0
    tdm[target_position_grid[0] - m2:target_position_grid[0] + m2,
        target_position_grid[1] - m1:target_position_grid[1] + m1] = 0

    assert agent_position_grid[0] > 0 and agent_position_grid[
        0] < top_down_map.shape[0], print('assert1 ', agent_position_grid,
                                          top_down_map.shape)
    assert target_position_grid[0] > 0 and target_position_grid[
        0] < top_down_map.shape[0], print('assert2 ', target_position_grid,
                                          top_down_map.shape)
    assert agent_position_grid[1] > 0 and agent_position_grid[
        1] < top_down_map.shape[1], print('assert3 ', agent_position_grid,
                                          top_down_map.shape)
    assert target_position_grid[1] > 0 and target_position_grid[
        1] < top_down_map.shape[1], print('assert4 ', target_position_grid,
                                          top_down_map.shape)

    return tdm, agent_position_grid, target_position_grid
Exemple #4
0
    def update_map(self, agent_position):
        a_x, a_y = maps.to_grid(
            agent_position[0],
            agent_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )
        # Don't draw over the source point
        if self._top_down_map[a_x, a_y] != maps.MAP_SOURCE_POINT_INDICATOR:
            color = 10 + min(
                self._step_count * 245 // self._config.MAX_EPISODE_STEPS, 245)

            thickness = int(
                np.round(self._map_resolution[0] * 2 / MAP_THICKNESS_SCALAR))
            cv2.line(
                self._top_down_map,
                self._previous_xy_location,
                (a_y, a_x),
                color,
                thickness=thickness,
            )

        self._previous_xy_location = (a_y, a_x)
        return self._top_down_map, a_x, a_y
    def reset_metric(self, episode, *args: Any, **kwargs: Any):
        self._step_count = 0
        self._metric = None
        self._top_down_map = self.get_original_map()
        agent_position = self._sim.get_agent_state().position
        a_x, a_y = maps.to_grid(
            agent_position[2],
            agent_position[0],
            self._top_down_map.shape[0:2],
            sim=self._sim,
        )
        self._previous_xy_location = (a_y, a_x)

        self.update_fog_of_war_mask(np.array([a_x, a_y]))

        # draw source and target parts last to avoid overlap
        self._draw_goals_view_points(episode)
        self._draw_goals_aabb(episode)
        self._draw_goals_positions(episode)

        self._draw_shortest_path(episode, agent_position)

        if self._config.DRAW_SOURCE:
            self._draw_point(episode.start_position,
                             maps.MAP_SOURCE_POINT_INDICATOR)
    def update_map(self, agent_position):
        a_x, a_y = maps.to_grid(
            agent_position[2],
            agent_position[0],
            self._top_down_map.shape[0:2],
            sim=self._sim,
        )
        # Don't draw over the source point
        if self._top_down_map[a_x, a_y] != maps.MAP_SOURCE_POINT_INDICATOR:
            color = 10 + min(
                self._step_count * 245 // self._config.MAX_EPISODE_STEPS, 245)

            thickness = self.line_thickness
            cv2.line(
                self._top_down_map,
                self._previous_xy_location,
                (a_y, a_x),
                color,
                thickness=thickness,
            )

        self.update_fog_of_war_mask(np.array([a_x, a_y]))

        self._previous_xy_location = (a_y, a_x)
        return self._top_down_map, a_x, a_y
Exemple #7
0
    def get_original_map(self, episode):
        top_down_map = maps.get_topdown_map(
            self._sim,
            self._map_resolution,
            self._num_samples,
            self._config.DRAW_BORDER,
        )

        range_x = np.where(np.any(top_down_map, axis=1))[0]
        range_y = np.where(np.any(top_down_map, axis=0))[0]

        self._ind_x_min = range_x[0]
        self._ind_x_max = range_x[-1]
        self._ind_y_min = range_y[0]
        self._ind_y_max = range_y[-1]

        if self._config.DRAW_SOURCE_AND_TARGET:
            # mark source point
            s_x, s_y = maps.to_grid(
                episode.start_position[0],
                episode.start_position[2],
                self._coordinate_min,
                self._coordinate_max,
                self._map_resolution,
            )

            point_padding = 2 * int(
                np.ceil(self._map_resolution[0] / MAP_THICKNESS_SCALAR))
            top_down_map[s_x - point_padding:s_x + point_padding + 1,
                         s_y - point_padding:s_y + point_padding +
                         1, ] = maps.MAP_SOURCE_POINT_INDICATOR

            # mark target point
            t_x, t_y = maps.to_grid(
                episode.goals[0].position[0],
                episode.goals[0].position[2],
                self._coordinate_min,
                self._coordinate_max,
                self._map_resolution,
            )

            top_down_map[t_x - point_padding:t_x + point_padding + 1,
                         t_y - point_padding:t_y + point_padding +
                         1, ] = maps.MAP_TARGET_POINT_INDICATOR

        return top_down_map
 def _draw_point(self, position, point_type):
     t_x, t_y = maps.to_grid(
         position[2],
         position[0],
         self._top_down_map.shape[0:2],
         sim=self._sim,
     )
     self._top_down_map[t_x - self.point_padding:t_x + self.point_padding +
                        1, t_y - self.point_padding:t_y +
                        self.point_padding + 1, ] = point_type
Exemple #9
0
    def reset_metric(self, *args: Any, episode, **kwargs: Any):
        self._step_count = 0
        self._metric = None
        self._top_down_map = self.get_original_map()
        self._valid_map = self._top_down_map != MAP_INVALID_POINT
        self._explored_map = np.zeros_like(self._valid_map)

        agent_position = self._sim.get_agent_state().position
        a_x, a_y = maps.to_grid(
            agent_position[0],
            agent_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )
        goal_idx = getattr(episode, "goal_idx", 0)

        self._previous_xy_location = (a_y, a_x)
        if self._config.DRAW_SHORTEST_PATH:
            # draw shortest path
            self._shortest_path_points = self._sim.get_straight_shortest_path_points(
                agent_position, episode.goals[goal_idx].position)
            self._shortest_path_points = [
                maps.to_grid(
                    p[0],
                    p[2],
                    self._coordinate_min,
                    self._coordinate_max,
                    self._map_resolution,
                )[::-1] for p in self._shortest_path_points
            ]
            maps.draw_path(
                self._top_down_map,
                self._shortest_path_points,
                maps.MAP_SHORTEST_PATH_COLOR,
                self.line_thickness,
            )

        self.update_fog_of_war_mask(np.array([a_x, a_y]))

        # draw source and target points last to avoid overlap
        if self._config.DRAW_SOURCE_AND_TARGET:
            self.draw_source_and_target(episode)
Exemple #10
0
    def draw_source_and_target(self, episode):
        # mark source point
        s_x, s_y = maps.to_grid(
            episode.start_position[0],
            episode.start_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )
        point_padding = 2 * int(
            np.ceil(self._map_resolution[0] / MAP_THICKNESS_SCALAR))
        self._top_down_map[s_x - point_padding:s_x + point_padding + 1,
                           s_y - point_padding:s_y + point_padding +
                           1, ] = maps.MAP_SOURCE_POINT_INDICATOR

        if not self._config.DRAW_ALL_GOALS:
            goal_idx = getattr(episode, "goal_idx", 0)

            # mark target point
            t_x, t_y = maps.to_grid(
                episode.goals[goal_idx].position[0],
                episode.goals[goal_idx].position[2],
                self._coordinate_min,
                self._coordinate_max,
                self._map_resolution,
            )
            self._top_down_map[t_x - point_padding:t_x + point_padding + 1,
                               t_y - point_padding:t_y + point_padding +
                               1, ] = maps.MAP_TARGET_POINT_INDICATOR
        else:
            for goal in episode.goals:
                # mark target point
                t_x, t_y = maps.to_grid(
                    goal.position[0],
                    goal.position[2],
                    self._coordinate_min,
                    self._coordinate_max,
                    self._map_resolution,
                )
                self._top_down_map[t_x - point_padding:t_x + point_padding + 1,
                                   t_y - point_padding:t_y + point_padding +
                                   1, ] = maps.MAP_TARGET_POINT_INDICATOR
Exemple #11
0
 def _draw_point(self, position, point_type):
     t_x, t_y = maps.to_grid(
         position[0],
         position[2],
         self._coordinate_min,
         self._coordinate_max,
         self._map_resolution,
     )
     self._top_down_map[t_x - self.point_padding:t_x + self.point_padding +
                        1, t_y - self.point_padding:t_y +
                        self.point_padding + 1, ] = point_type
Exemple #12
0
 def reset_metric(self, episode):
     self._step_count = 0
     self._metric = None
     self._top_down_map = self.get_original_map(episode)
     agent_position = self._sim.get_agent_state().position
     a_x, a_y = maps.to_grid(
         agent_position[0],
         agent_position[2],
         self._coordinate_min,
         self._coordinate_max,
         self._map_resolution,
     )
     self._previous_xy_location = (a_y, a_x)
Exemple #13
0
    def _draw_goals_aabb(self, episode):
        if self._config.DRAW_GOAL_AABBS:
            for goal in episode.goals:
                try:
                    sem_scene = self._sim.semantic_annotations()
                    object_id = goal.object_id
                    assert int(
                        sem_scene.objects[object_id].id.split("_")[-1]
                    ) == int(
                        goal.object_id
                    ), f"Object_id doesn't correspond to id in semantic scene objects dictionary for episode: {episode}"

                    center = sem_scene.objects[object_id].aabb.center
                    x_len, _, z_len = (
                        sem_scene.objects[object_id].aabb.sizes / 2.0
                    )
                    # Nodes to draw rectangle
                    corners = [
                        center + np.array([x, 0, z])
                        for x, z in [
                            (-x_len, -z_len),
                            (-x_len, z_len),
                            (x_len, z_len),
                            (x_len, -z_len),
                            (-x_len, -z_len),
                        ]
                    ]

                    map_corners = [
                        maps.to_grid(
                            p[0],
                            p[2],
                            self._coordinate_min,
                            self._coordinate_max,
                            self._map_resolution,
                        )
                        for p in corners
                    ]

                    maps.draw_path(
                        self._top_down_map,
                        map_corners,
                        maps.MAP_TARGET_BOUNDING_BOX,
                        self.line_thickness,
                    )
                except AttributeError:
                    pass
Exemple #14
0
 def _draw_shortest_path(self, episode: Episode,
                         agent_position: AgentState):
     if self._config.DRAW_SHORTEST_PATH:
         self._shortest_path_points = self._sim.get_straight_shortest_path_points(
             agent_position, episode.goals[0].position)
         self._shortest_path_points = [
             maps.to_grid(p[2],
                          p[0],
                          self._top_down_map.shape[0:2],
                          sim=self._sim) for p in self._shortest_path_points
         ]
         maps.draw_path(
             self._top_down_map,
             self._shortest_path_points,
             maps.MAP_SHORTEST_PATH_COLOR,
             self.line_thickness,
         )
    def reset_metric(self, *args: Any, episode, **kwargs: Any):
        self._step_count = 0
        self._metric = None
        self._top_down_map = self.get_original_map()
        agent_position = self._sim.get_agent_state().position
        a_x, a_y = maps.to_grid(
            agent_position[0],
            agent_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )
        self._previous_xy_location = (a_y, a_x)

        self.update_fog_of_war_mask(np.array([a_x, a_y]))

        # draw source last to avoid overlap
        if self._config.DRAW_SOURCE:
            self._draw_point(episode.start_position, maps.MAP_SOURCE_POINT_INDICATOR)
 scene_bb = sim.get_active_scene_graph().get_root_node().cumulative_bb
 height = scene_bb.y().min
 if display:
     top_down_map = maps.get_topdown_map(
         sim.pathfinder, height, meters_per_pixel=meters_per_pixel
     )
     recolor_map = np.array(
         [[255, 255, 255], [128, 128, 128], [0, 0, 0]], dtype=np.uint8
     )
     top_down_map = recolor_map[top_down_map]
     grid_dimensions = (top_down_map.shape[0], top_down_map.shape[1])
     # convert world trajectory points to maps module grid points
     trajectory = [
         maps.to_grid(
             path_point[2],
             path_point[0],
             grid_dimensions,
             pathfinder=sim.pathfinder,
         )
         for path_point in path_points
     ]
     grid_tangent = mn.Vector2(
         trajectory[1][1] - trajectory[0][1], trajectory[1][0] - trajectory[0][0]
     )
     path_initial_tangent = grid_tangent / grid_tangent.length()
     initial_angle = math.atan2(path_initial_tangent[0], path_initial_tangent[1])
     # draw the agent and trajectory on the map
     maps.draw_path(top_down_map, trajectory)
     maps.draw_agent(
         top_down_map, trajectory[0], initial_angle, agent_radius_px=8
     )
     print("\nDisplay the map with agent and path overlay:")
def get_map_with_path(env, map_res, agent_path):

    # top down map
    top_down_map = maps.get_topdown_map(env.sim,
                                        num_samples=1000000,
                                        map_resolution=(map_res, map_res))
    top_down_map, rmin, rmax, cmin, cmax = crop_map(top_down_map)

    tdm = top_down_map.copy()

    # target/goal
    target_position = env.current_episode.goals[0].position
    target_position_grid = maps.to_grid(target_position[0], target_position[2],
                                        maps.COORDINATE_MIN,
                                        maps.COORDINATE_MAX,
                                        (map_res, map_res))

    for k in range(len(agent_path)):

        pos = agent_path[k]

        # agent's position   # to_grid converts real world (x,y) to pixel (x,y)
        agent_position = pos  #env.sim.get_agent_state().position
        agent_position_grid = maps.to_grid(agent_position[0],
                                           agent_position[2],
                                           maps.COORDINATE_MIN,
                                           maps.COORDINATE_MAX,
                                           (map_res, map_res))

        # grid offset for map
        agent_position_grid = (agent_position_grid[0] - rmin,
                               agent_position_grid[1] - cmin)

        # agent pos
        m1 = 1
        color = [255, 0, 0]
        if (k == 0):
            m1 = 3
            color = [0, 255, 0]

        tdm[agent_position_grid[0] - m1:agent_position_grid[0] + m1,
            agent_position_grid[1] - m1:agent_position_grid[1] + m1, :] = color

        assert agent_position_grid[0] > 0 and agent_position_grid[
            0] < top_down_map.shape[0], print('assert1 ', agent_position_grid,
                                              top_down_map.shape)
        assert agent_position_grid[1] > 0 and agent_position_grid[
            1] < top_down_map.shape[1], print('assert3 ', agent_position_grid,
                                              top_down_map.shape)

    target_position_grid = (target_position_grid[0] - rmin,
                            target_position_grid[1] - cmin)

    # target pos
    m2 = 3
    color = [0, 0, 255]
    tdm[target_position_grid[0] - m2:target_position_grid[0] + m2,
        target_position_grid[1] - m2:target_position_grid[1] + m2, :] = color
    #tdm[target_position_grid[0]-m1:target_position_grid[0]+m1,target_position_grid[1]-m2:target_position_grid[1]+m2,:] = color
    #tdm[target_position_grid[0]-m2:target_position_grid[0]+m2,target_position_grid[1]-m1:target_position_grid[1]+m1,:] = color

    assert target_position_grid[0] > 0 and target_position_grid[
        0] < top_down_map.shape[0], print('assert2 ', target_position_grid,
                                          top_down_map.shape)
    assert target_position_grid[1] > 0 and target_position_grid[
        1] < top_down_map.shape[1], print('assert4 ', target_position_grid,
                                          top_down_map.shape)

    return tdm
Exemple #18
0
def to_grid(pos, map_resolution):
    return maps.to_grid(pos[0], pos[2], maps.COORDINATE_MIN,
                        maps.COORDINATE_MAX, [map_resolution, map_resolution])
Exemple #19
0
    def _get_mesh_occupancy(self, episode, agent_state):
        episode_id = (episode.episode_id, episode.scene_id)
        if self.current_episode_id != episode_id:
            self.current_episode_id = episode_id
            # Transpose to make x rightward and y downward
            self._top_down_map = self.get_original_map().T

        agent_position = agent_state.position
        agent_rotation = agent_state.rotation
        a_x, a_y = maps.to_grid(
            agent_position[0],
            agent_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )

        # Crop region centered around the agent
        mrange = int(self.map_size * 1.5)
        ego_map = self._top_down_map[
                  (a_y - mrange): (a_y + mrange), (a_x - mrange): (a_x + mrange)
                  ]
        if ego_map.shape[0] == 0 or ego_map.shape[1] == 0:
            ego_map = np.zeros((2 * mrange + 1, 2 * mrange + 1), dtype=np.uint8)

        # Rotate to get egocentric map
        # Negative since the value returned is clockwise rotation about Y,
        # but we need anti-clockwise rotation
        agent_heading = -compute_heading_from_quaternion(agent_rotation)
        agent_heading = math.degrees(agent_heading)

        half_size = ego_map.shape[0] // 2
        center = (half_size, half_size)
        M = cv2.getRotationMatrix2D(center, agent_heading, scale=1.0)

        ego_map = (
                cv2.warpAffine(
                    ego_map * 255,
                    M,
                    (ego_map.shape[1], ego_map.shape[0]),
                    flags=cv2.INTER_LINEAR,
                    borderMode=cv2.BORDER_CONSTANT,
                    borderValue=(1,),
                ).astype(np.float32)
                / 255.0
        )

        mrange = int(self.map_size)
        ego_map = ego_map[
                  (half_size - mrange): (half_size + mrange),
                  (half_size - mrange): (half_size + mrange),
                  ]
        ego_map[ego_map > 0.5] = 1.0
        ego_map[ego_map <= 0.5] = 0.0

        # This map is currently 0 if occupied and 1 if unoccupied. Flip it.
        ego_map = 1.0 - ego_map

        # Flip the x axis because to_grid() flips the conventions
        ego_map = np.flip(ego_map, axis=1)

        # Get forward region infront of the agent
        half_size = ego_map.shape[0] // 2
        quarter_size = ego_map.shape[0] // 4
        center = (half_size, half_size)

        ego_map = ego_map[0:half_size, quarter_size: (quarter_size + half_size)]

        # Append explored status in the 2nd channel
        ego_map = np.stack([ego_map, np.ones_like(ego_map)], axis=2)

        return ego_map
Exemple #20
0
# head_cat = 'S'
# for i, loc in df[df['head_cat'] == head_cat].iterrows():
ctr = 0
for i, loc in df.iterrows():
    # if ctr > 50000:
    #     break
    # else:
    #     ctr += 1

    max_weight_i = np.argmax(loc[aux_tasks])
    color = colors[max_weight_i]
    p_x, p_y = maps.to_grid(
        loc['pos_x'],
        loc['pos_y'],
        COORDINATE_MIN,
        COORDINATE_MAX,
        map_resolution,
    )
    a_x = p_x - CLIPPED_X
    a_y = p_y - CLIPPED_Y
    box = (np.ones((*box_size, 3)) * 255 * color).astype(np.uint8)
    utils.paste_overlapping_image(
        background=top_down_map,
        foreground=box,
        location=(a_x, a_y)
    )

a, b = 4, 4
n = 9
r = 3
    first_list = read_file_list(first_file)
    second_list = read_file_list(second_file)
    matches = first_list.keys()
    first_xyz = [[float(value) for value in first_list[a][0:3]]
                 for a in matches]
    second_xyz = [[float(value) * float(1.0) for value in second_list[b][0:3]]
                  for b in matches]
    first_rot = [[float(value) for value in first_list[a][3:]]
                 for a in matches]
    grid_dimensions = (hablab_topdown_map.shape[0],
                       hablab_topdown_map.shape[1])
    trajectory = [
        maps.to_grid(
            -(path_point[2]) + 19.25,
            (path_point[0] - 2.04),
            grid_dimensions,
            pathfinder=sim.pathfinder,
        ) for path_point in second_xyz
    ]

    ground_truth = [
        maps.to_grid(
            -(path_point[2]) + 19.25,
            (path_point[0] - 2.04),
            grid_dimensions,
            pathfinder=sim.pathfinder,
        ) for path_point in first_xyz
    ]

    colored_map = maps.colorize_topdown_map(hablab_topdown_map)
    trajectory = np.array(trajectory)
    def _get_mesh_occupancy(self):
        agent_position = self.current_episode.start_position
        agent_rotation = quaternion_xyzw_to_wxyz(self.current_episode.start_rotation)
        a_x, a_y = maps.to_grid(
            agent_position[0],
            agent_position[2],
            self._coordinate_min,
            self._coordinate_max,
            self._map_resolution,
        )

        # The map size here represents size around the agent, not infront.
        mrange = int(self.map_size * 1.5 / 2.0)

        # Add extra padding if map range is coordinates go out of bounds
        y_start = a_y - mrange
        y_end = a_y + mrange
        x_start = a_x - mrange
        x_end = a_x + mrange

        x_l_pad, y_l_pad, x_r_pad, y_r_pad = 0, 0, 0, 0

        H, W = self._top_down_map.shape
        if x_start < 0:
            x_l_pad = int(-x_start)
            x_start += x_l_pad
            x_end += x_l_pad
        if x_end >= W:
            x_r_pad = int(x_end - W + 1)
        if y_start < 0:
            y_l_pad = int(-y_start)
            y_start += y_l_pad
            y_end += y_l_pad
        if y_end >= H:
            y_r_pad = int(y_end - H + 1)

        ego_map = np.pad(self._top_down_map, ((y_l_pad, y_r_pad), (x_l_pad, x_r_pad)))
        ego_map = ego_map[y_start : (y_end + 1), x_start : (x_end + 1)]

        if ego_map.shape[0] == 0 or ego_map.shape[1] == 0:
            ego_map = np.zeros((2 * mrange + 1, 2 * mrange + 1), dtype=np.uint8)

        # Rotate to get egocentric map
        # Negative since the value returned is clockwise rotation about Y,
        # but we need anti-clockwise rotation
        agent_heading = -compute_heading_from_quaternion(agent_rotation)
        agent_heading = math.degrees(agent_heading)

        half_size = ego_map.shape[0] // 2
        center = (half_size, half_size)
        M = cv2.getRotationMatrix2D(center, agent_heading, scale=1.0)

        ego_map = cv2.warpAffine(
            ego_map,
            M,
            (ego_map.shape[1], ego_map.shape[0]),
            flags=cv2.INTER_NEAREST,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=(1,),
        )

        ego_map = ego_map.astype(np.float32)
        mrange = int(self.map_size / 2.0)
        start_coor = half_size - mrange
        end_coor = int(start_coor + self.map_size - 1)
        ego_map = ego_map[start_coor : (end_coor + 1), start_coor : (end_coor + 1)]

        # This map is currently 0 if occupied and 1 if unoccupied. Flip it.
        ego_map = 1.0 - ego_map

        # Flip the x axis because to_grid() flips the conventions
        ego_map = np.flip(ego_map, axis=1)

        # Append explored status in the 2nd channel
        ego_map = np.stack([ego_map, np.ones_like(ego_map)], axis=2)

        return ego_map