Exemple #1
0
class ReferenceGenome(object):
    """An object that represents a `reference genome <https://en.wikipedia.org/wiki/Reference_genome>`__.

    Examples
    --------

    >>> contigs = ["1", "X", "Y", "MT"]
    >>> lengths = {"1": 249250621, "X": 155270560, "Y": 59373566, "MT": 16569}
    >>> par = [("X", 60001, 2699521)]
    >>> my_ref = hl.ReferenceGenome("my_ref", contigs, lengths, "X", "Y", "MT", par)

    Notes
    -----
    Hail comes with predefined reference genomes (case sensitive!):

     - GRCh37
     - GRCh38
     - GRCm38

    You can access these reference genome objects using :func:`.get_reference`:

    >>> rg = hl.get_reference('GRCh37')

    Note that constructing a new reference genome, either by using the class
    constructor or by using :meth:`.ReferenceGenome.read` will add the
    reference genome to the list of known references; it is possible to access
    the reference genome using :func:`.get_reference` anytime afterwards.

    Note
    ----
    Reference genome names must be unique. It is not possible to overwrite the
    built-in reference genomes.

    Parameters
    ----------
    name : :obj:`str`
        Name of reference. Must be unique and NOT one of Hail's
        predefined references: ``'GRCh37'``, ``'GRCh38'``, ``'GRCm38'``, and
        ``'default'``.
    contigs : :obj:`list` of :obj:`str`
        Contig names.
    lengths : :obj:`dict` of :obj:`str` to :obj:`int`
        Dict of contig names to contig lengths.
    x_contigs : :obj:`str` or :obj:`list` of :obj:`str`
        Contigs to be treated as X chromosomes.
    y_contigs : :obj:`str` or :obj:`list` of :obj:`str`
        Contigs to be treated as Y chromosomes.
    mt_contigs : :obj:`str` or :obj:`list` of :obj:`str`
        Contigs to be treated as mitochondrial DNA.
    par : :obj:`list` of :obj:`tuple` of (str, int, int)
        List of tuples with (contig, start, end)
    """

    _references = {}

    @classmethod
    def _from_config(cls, config, _builtin=False):
        def par_tuple(p):
            assert p['start']['contig'] == p['end']['contig']
            return (p['start']['contig'], p['start']['position'], p['end']['position'])
        contigs = config['contigs']
        return ReferenceGenome(config['name'],
                               [c['name'] for c in contigs],
                               {c['name']: c['length'] for c in contigs},
                               config['xContigs'],
                               config['yContigs'],
                               config['mtContigs'],
                               [par_tuple(p) for p in config['par']],
                               _builtin)

    @typecheck_method(name=str,
                      contigs=sequenceof(str),
                      lengths=dictof(str, int),
                      x_contigs=oneof(str, sequenceof(str)),
                      y_contigs=oneof(str, sequenceof(str)),
                      mt_contigs=oneof(str, sequenceof(str)),
                      par=sequenceof(sized_tupleof(str, int, int)),
                      _builtin=bool)
    def __init__(self, name, contigs, lengths, x_contigs=[], y_contigs=[], mt_contigs=[], par=[], _builtin=False):
        super(ReferenceGenome, self).__init__()

        contigs = wrap_to_list(contigs)
        x_contigs = wrap_to_list(x_contigs)
        y_contigs = wrap_to_list(y_contigs)
        mt_contigs = wrap_to_list(mt_contigs)

        self._config = {
            'name': name,
            'contigs': [{'name': c, 'length': l} for c, l in lengths.items()],
            'xContigs': x_contigs,
            'yContigs': y_contigs,
            'mtContigs': mt_contigs,
            'par': [{'start': {'contig': c, 'position': s}, 'end': {'contig': c, 'position': e}} for (c, s, e) in par]
        }

        self._contigs = contigs
        self._lengths = lengths
        self._par_tuple = par
        self._par = [hl.Interval(hl.Locus(c, s, self), hl.Locus(c, e, self)) for (c, s, e) in par]
        self._global_positions = None

        ReferenceGenome._references[name] = self

        if not _builtin:
            Env.backend().add_reference(self._config)

        hl.ir.register_reference_genome_functions(name)

        self._has_sequence = False
        self._liftovers = set()


    def __str__(self):
        return self._config['name']

    def __repr__(self):
        return 'ReferenceGenome(name=%s, contigs=%s, lengths=%s, x_contigs=%s, y_contigs=%s, mt_contigs=%s, par=%s)' % \
               (self.name, self.contigs, self.lengths, self.x_contigs, self.y_contigs, self.mt_contigs, self._par_tuple)

    def __eq__(self, other):
        return isinstance(other, ReferenceGenome) and self._config == other._config

    def __hash__(self):
        return hash(self.name)

    @property
    def name(self):
        """Name of reference genome.

        Returns
        -------
        :obj:`str`
        """
        return self._config['name']

    @property
    def contigs(self):
        """Contig names.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        return self._contigs

    @property
    def lengths(self):
        """Dict of contig name to contig length.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        return self._lengths

    @property
    def x_contigs(self):
        """X contigs.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        return self._config['xContigs']

    @property
    def y_contigs(self):
        """Y contigs.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        return self._config['yContigs']

    @property
    def mt_contigs(self):
        """Mitochondrial contigs.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        return self._config['mtContigs']

    @property
    def par(self):
        """Pseudoautosomal regions.

        Returns
        -------
        :obj:`list` of :class:`.Interval`
        """

        return self._par

    @typecheck_method(contig=str)
    def contig_length(self, contig):
        """Contig length.

        Parameters
        ----------
        contig : :obj:`str`
            Contig name.

        Returns
        -------
        :obj:`int`
            Length of contig.
        """
        if contig in self.lengths:
            return self.lengths[contig]
        else:
            raise KeyError("Contig `{}' is not in reference genome.".format(contig))

    @typecheck_method(contig=str)
    def _contig_global_position(self, contig):
        if self._global_positions is None:
            gp = {}
            lengths = self._lengths
            x = 0
            for c in self.contigs:
                gp[c] = x
                x += lengths[c]
            self._global_positions = gp
        return self._global_positions[contig]

    @classmethod
    @typecheck_method(path=str)
    def read(cls, path):
        """Load reference genome from a JSON file.

        Notes
        -----

        The JSON file must have the following format:

        .. code-block:: text

            {"name": "my_reference_genome",
             "contigs": [{"name": "1", "length": 10000000},
                         {"name": "2", "length": 20000000},
                         {"name": "X", "length": 19856300},
                         {"name": "Y", "length": 78140000},
                         {"name": "MT", "length": 532}],
             "xContigs": ["X"],
             "yContigs": ["Y"],
             "mtContigs": ["MT"],
             "par": [{"start": {"contig": "X","position": 60001},"end": {"contig": "X","position": 2699521}},
                     {"start": {"contig": "Y","position": 10001},"end": {"contig": "Y","position": 2649521}}]
            }


        `name` must be unique and not overlap with Hail's pre-instantiated
        references: ``'GRCh37'``, ``'GRCh38'``, ``'GRCm38'``, and ``'default'``.
        The contig names in `xContigs`, `yContigs`, and `mtContigs` must be
        present in `contigs`. The intervals listed in `par` must have contigs in
        either `xContigs` or `yContigs` and must have positions between 0 and
        the contig length given in `contigs`.

        Parameters
        ----------
        path : :obj:`str`
            Path to JSON file.

        Returns
        -------
        :class:`.ReferenceGenome`
        """
        with hl.hadoop_open(path) as f:
            return ReferenceGenome._from_config(json.load(f))

    @typecheck_method(output=str)
    def write(self, output):
        """"Write this reference genome to a file in JSON format.

        Examples
        --------

        >>> my_rg = hl.ReferenceGenome("new_reference", ["x", "y", "z"], {"x": 500, "y": 300, "z": 200})
        >>> my_rg.write("output/new_reference.json")

        Notes
        -----

        Use :class:`~hail.ReferenceGenome.read` to reimport the exported
        reference genome in a new HailContext session.

        Parameters
        ----------
        output : :obj:`str`
            Path of JSON file to write.
        """
        with hl.utils.hadoop_open(output, 'w') as f:
            json.dump(self._config, f)

    @typecheck_method(fasta_file=str,
                      index_file=nullable(str))
    def add_sequence(self, fasta_file, index_file=None):
        """Load the reference sequence from a FASTA file.

        Examples
        --------
        Access the GRCh37 reference genome using :func:`.get_reference`:

        >>> rg = hl.get_reference('GRCh37') # doctest: +SKIP

        Add a sequence file:

        >>> rg.add_sequence('gs://hail-common/references/human_g1k_v37.fasta.gz',
        ...                 'gs://hail-common/references/human_g1k_v37.fasta.fai') # doctest: +SKIP

        Add a sequence file with the default index location:

        >>> rg.add_sequence('gs://hail-common/references/human_g1k_v37.fasta.gz') # doctest: +SKIP


        Notes
        -----
        This method can only be run once per reference genome. Use
        :meth:`~has_sequence` to test whether a sequence is loaded.

        FASTA and index files are hosted on google cloud for some of Hail's built-in
        references:

        **GRCh37**

        - FASTA file: ``gs://hail-common/references/human_g1k_v37.fasta.gz``
        - Index file: ``gs://hail-common/references/human_g1k_v37.fasta.fai``

        **GRCh38**

        - FASTA file: ``gs://hail-common/references/Homo_sapiens_assembly38.fasta.gz``
        - Index file: ``gs://hail-common/references/Homo_sapiens_assembly38.fasta.fai``

        Public download links are available
        `here <https://console.cloud.google.com/storage/browser/hail-common/references/>`__.

        Parameters
        ----------
        fasta_file : :obj:`str`
            Path to FASTA file. Can be compressed (GZIP) or uncompressed.
        index_file : :obj:`None` or :obj:`str`
            Path to FASTA index file. Must be uncompressed. If `None`, replace
            the fasta_file's extension with `fai`.
        """
        if index_file is None:
            index_file = re.sub(r'\.[^.]*$', '.fai', fasta_file)
        Env.backend().add_sequence(self.name, fasta_file, index_file)
        self._has_sequence = True

    def has_sequence(self):
        """True if the reference sequence has been loaded.

        Returns
        -------
        :obj:`bool`
        """
        return self._has_sequence

    def remove_sequence(self):
        """Remove the reference sequence.

        Returns
        -------
        :obj:`bool`
        """
        self._has_sequence = False
        Env.backend().remove_sequence(self.name)

    @classmethod
    @typecheck_method(name=str,
                      fasta_file=str,
                      index_file=str,
                      x_contigs=oneof(str, sequenceof(str)),
                      y_contigs=oneof(str, sequenceof(str)),
                      mt_contigs=oneof(str, sequenceof(str)),
                      par=sequenceof(sized_tupleof(str, int, int)))
    def from_fasta_file(cls, name, fasta_file, index_file,
                        x_contigs=[], y_contigs=[], mt_contigs=[], par=[]):
        """Create reference genome from a FASTA file.
        
        Parameters
        ----------
        name: :obj:`str`
            Name for new reference genome.
        fasta_file : :obj:`str`
            Path to FASTA file. Can be compressed (GZIP) or uncompressed.
        index_file : :obj:`str`
            Path to FASTA index file. Must be uncompressed.
        x_contigs : :obj:`str` or :obj:`list` of :obj:`str`
            Contigs to be treated as X chromosomes.
        y_contigs : :obj:`str` or :obj:`list` of :obj:`str`
            Contigs to be treated as Y chromosomes.
        mt_contigs : :obj:`str` or :obj:`list` of :obj:`str`
            Contigs to be treated as mitochondrial DNA.
        par : :obj:`list` of :obj:`tuple` of (str, int, int)
            List of tuples with (contig, start, end)

        Returns
        -------
        :class:`.ReferenceGenome`
        """
        par_strings = ["{}:{}-{}".format(contig, start, end) for (contig, start, end) in par]
        Env.backend().from_fasta_file(name, fasta_file, index_file, x_contigs, y_contigs, mt_contigs, par_strings)

        rg = ReferenceGenome._from_config(Env.backend().get_reference(name), _builtin=True)
        rg._has_sequence = True
        return rg

    @typecheck_method(dest_reference_genome=reference_genome_type)
    def has_liftover(self, dest_reference_genome):
        """``True`` if a liftover chain file is available from this reference
        genome to the destination reference.

        Parameters
        ----------
        dest_reference_genome : :obj:`str` or :class:`.ReferenceGenome`

        Returns
        -------
        :obj:`bool`
        """
        return dest_reference_genome.name in self._liftovers

    @typecheck_method(dest_reference_genome=reference_genome_type)
    def remove_liftover(self, dest_reference_genome):
        """Remove liftover to `dest_reference_genome`.

        Parameters
        ----------
        dest_reference_genome : :obj:`str` or :class:`.ReferenceGenome`
        """
        if dest_reference_genome.name in self._liftovers:
            self._liftovers.remove(dest_reference_genome.name)
            Env.backend().remove_liftover(self.name, dest_reference_genome.name)

    @typecheck_method(chain_file=str,
                      dest_reference_genome=reference_genome_type)
    def add_liftover(self, chain_file, dest_reference_genome):
        """Register a chain file for liftover.

        Examples
        --------
        Access GRCh37 and GRCh38 using :func:`.get_reference`:

        >>> rg37 = hl.get_reference('GRCh37') # doctest: +SKIP
        >>> rg38 = hl.get_reference('GRCh38') # doctest: +SKIP

        Add a chain file from 37 to 38:

        >>> rg37.add_liftover('gs://hail-common/references/grch37_to_grch38.over.chain.gz', rg38) # doctest: +SKIP

        Notes
        -----
        This method can only be run once per reference genome. Use
        :meth:`~has_liftover` to test whether a chain file has been registered.

        The chain file format is described
        `here <https://genome.ucsc.edu/goldenpath/help/chain.html>`__.

        Chain files are hosted on google cloud for some of Hail's built-in
        references:

        **GRCh37 to GRCh38**
        gs://hail-common/references/grch37_to_grch38.over.chain.gz

        **GRCh38 to GRCh37**
        gs://hail-common/references/grch38_to_grch37.over.chain.gz

        Public download links are available
        `here <https://console.cloud.google.com/storage/browser/hail-common/references/>`__.

        Parameters
        ----------
        chain_file : :obj:`str`
            Path to chain file. Can be compressed (GZIP) or uncompressed.
        dest_reference_genome : :obj:`str` or :class:`.ReferenceGenome`
            Reference genome to convert to.
        """

        Env.backend().add_liftover(self.name, chain_file, dest_reference_genome.name)
        self._liftovers.add(dest_reference_genome.name)
        hl.ir.register_liftover_functions(self.name, dest_reference_genome.name)
Exemple #2
0
class tndarray(HailType):
    """Hail type for n-dimensional arrays.

    .. include:: _templates/experimental.rst

    In Python, these are represented as NumPy :obj:`ndarray`.

    Notes
    -----

    NDArrays contain elements of only one type, which is parameterized by
    `element_type`.

    Parameters
    ----------
    element_type : :class:`.HailType`
        Element type of array.
    ndim : int32
        Number of dimensions.

    See Also
    --------
    :class:`.NDArrayExpression`, :func:`.ndarray`
    """
    @typecheck_method(element_type=hail_type, ndim=oneof(NatBase, int))
    def __init__(self, element_type, ndim):
        self._element_type = element_type
        self._ndim = NatLiteral(ndim) if isinstance(ndim, int) else ndim
        super(tndarray, self).__init__()

    @property
    def element_type(self):
        """NDArray element type.

        Returns
        -------
        :class:`.HailType`
            Element type.
        """
        return self._element_type

    @property
    def ndim(self):
        """NDArray number of dimensions.

        Returns
        -------
        :obj:`int`
            Number of dimensions.
        """
        assert isinstance(
            self._ndim, NatLiteral
        ), "tndarray must be realized with a concrete number of dimensions"
        return self._ndim.n

    def _traverse(self, obj, f):
        if f(self, obj):
            for elt in np.nditer(obj, ['zerosize_ok']):
                self.element_type._traverse(elt.item(), f)

    def _typecheck_one_level(self, annotation):
        if annotation is not None and not isinstance(annotation, np.ndarray):
            raise TypeError(
                "type 'ndarray' expected Python 'numpy.ndarray', but found type '%s'"
                % type(annotation))

    def __str__(self):
        return "ndarray<{}, {}>".format(self.element_type, self.ndim)

    def _eq(self, other):
        return isinstance(other,
                          tndarray) and self.element_type == other.element_type

    def _pretty(self, l, indent, increment):
        l.append('ndarray<')
        self._element_type._pretty(l, indent, increment)
        l.append(', ')
        l.append(str(self.ndim))
        l.append('>')

    def _parsable_string(self):
        return f'NDArray[{self._element_type._parsable_string()},{self.ndim}]'

    def _convert_from_json(self, x):
        np_type = self.element_type.to_numpy()
        return np.ndarray(shape=x['shape'],
                          buffer=np.array(x['data'], dtype=np_type),
                          strides=x['strides'],
                          dtype=np_type)

    def _convert_to_json(self, x):
        data = x.flatten("F").tolist()

        strides = []
        axis_one_step_byte_size = x.itemsize
        for dimension_size in x.shape:
            strides.append(axis_one_step_byte_size)
            axis_one_step_byte_size *= (dimension_size
                                        if dimension_size > 0 else 1)

        json_dict = {"shape": x.shape, "strides": strides, "data": data}
        return json_dict

    def clear(self):
        self._element_type.clear()
        self._ndim.clear()

    def unify(self, t):
        return isinstance(t, tndarray) and \
               self._element_type.unify(t._element_type) and \
               self._ndim.unify(t._ndim)

    def subst(self):
        return tndarray(self._element_type.subst(), self._ndim.subst())

    def _get_context(self):
        return self.element_type.get_context()
Exemple #3
0
class Locus(object):
    """An object that represents a location in the genome.

    Parameters
    ----------
    contig : :class:`str`
        Chromosome identifier.
    position : :obj:`int`
        Chromosomal position (1-indexed).
    reference_genome : :class:`str` or :class:`.ReferenceGenome`
        Reference genome to use.

    Note
    ----
    This object refers to the Python value returned by taking or collecting
    Hail expressions, e.g. ``mt.locus.take(5)``. This is rare; it is much
    more common to manipulate the :class:`.LocusExpression` object, which is
    constructed using the following functions:

     - :func:`.locus`
     - :func:`.parse_locus`
     - :func:`.locus_from_global_position`
    """
    @typecheck_method(contig=oneof(str, int),
                      position=int,
                      reference_genome=reference_genome_type)
    def __init__(self, contig, position, reference_genome='default'):
        if isinstance(contig, int):
            contig = str(contig)

        self._contig = contig
        self._position = position
        self._rg = reference_genome

    def __str__(self):
        return f'{self._contig}:{self._position}'

    def __repr__(self):
        return 'Locus(contig=%s, position=%s, reference_genome=%s)' % (
            self.contig, self.position, self._rg)

    def __eq__(self, other):
        return (isinstance(other, Locus) and self._contig == other._contig
                and self._position == other._position
                and self._rg == other._rg)

    def __hash__(self):
        return hash(self._contig) ^ hash(self._position) ^ hash(self._rg)

    @classmethod
    @typecheck_method(string=str, reference_genome=reference_genome_type)
    def parse(cls, string, reference_genome='default'):
        """Parses a locus object from a CHR:POS string.

        **Examples**

        >>> l1 = hl.Locus.parse('1:101230')
        >>> l2 = hl.Locus.parse('X:4201230')

        :param str string: String to parse.
        :param reference_genome: Reference genome to use. Default is :func:`~hail.default_reference`.
        :type reference_genome: :class:`str` or :class:`.ReferenceGenome`

        :rtype: :class:`.Locus`
        """
        contig, pos = string.split(':')
        if pos.lower() == 'end':
            pos = reference_genome.contig_length(contig)
        else:
            pos = int(pos)
        return Locus(contig, pos, reference_genome)

    @property
    def contig(self):
        """
        Chromosome identifier.
        :rtype: str
        """
        return self._contig

    @property
    def position(self):
        """
        Chromosomal position (1-based).
        :rtype: int
        """
        return self._position

    @property
    def reference_genome(self):
        """Reference genome.

        :return: :class:`.ReferenceGenome`
        """
        return self._rg
Exemple #4
0
        })


def localize(mt):
    if isinstance(mt, MatrixTable):
        return mt._localize_entries('__entries', '__cols')
    return mt


def unlocalize(mt):
    if isinstance(mt, Table):
        return mt._unlocalize_entries('__entries', '__cols', ['s'])
    return mt


@typecheck(mt=oneof(Table, MatrixTable), info_to_keep=sequenceof(str))
def transform_gvcf(mt, info_to_keep=[]) -> Table:
    """Transforms a gvcf into a sparse matrix table

    The input to this should be some result of either :func:`.import_vcf` or
    :func:`.import_gvcfs` with ``array_elements_required=False``.

    There is an assumption that this function will be called on a matrix table
    with one column (or a localized table version of the same).

    Parameters
    ----------
    mt : :obj:`Union[Table, MatrixTable]`
        The gvcf being transformed, if it is a table, then it must be a localized matrix table with
        the entries array named ``__entries``
    info_to_keep : :obj:`List[str]`
Exemple #5
0
class tstruct(HailType, Mapping):
    """Hail type for structured groups of heterogeneous fields.

    In Python, these are represented as :class:`.Struct`.

    Parameters
    ----------
    field_types : keyword args of :class:`.HailType`
        Fields.

    See Also
    --------
    :class:`.StructExpression`, :class:`.Struct`
    """
    @typecheck_method(field_types=hail_type)
    def __init__(self, **field_types):
        self._field_types = field_types
        self._fields = tuple(field_types)
        super(tstruct, self).__init__()

    @property
    def types(self):
        """Struct field types.

        Returns
        -------
        :obj:`tuple` of :class:`.HailType`
        """
        return tuple(self._field_types.values())

    @property
    def fields(self):
        """Struct field names.

        Returns
        -------
        :obj:`tuple` of :obj:`str`
            Tuple of struct field names.
        """
        return self._fields

    def _traverse(self, obj, f):
        if f(self, obj):
            for k, v in obj.items():
                t = self[k]
                t._traverse(v, f)

    def _typecheck_one_level(self, annotation):
        if annotation:
            if isinstance(annotation, Mapping):
                s = set(self)
                for f in annotation:
                    if f not in s:
                        raise TypeError(
                            "type '%s' expected fields '%s', but found fields '%s'"
                            % (self, list(self), list(annotation)))
            else:
                raise TypeError(
                    "type 'struct' expected type Mapping (e.g. dict or hail.utils.Struct), but found '%s'"
                    % type(annotation))

    @typecheck_method(item=oneof(int, str))
    def __getitem__(self, item):
        if not isinstance(item, str):
            item = self._fields[item]
        return self._field_types[item]

    def __iter__(self):
        return iter(self._field_types)

    def __len__(self):
        return len(self._fields)

    def __str__(self):
        return "struct{{{}}}".format(', '.join(
            '{}: {}'.format(escape_parsable(f), str(t))
            for f, t in self.items()))

    def _eq(self, other):
        return (isinstance(other, tstruct) and self._fields == other._fields
                and all(self[f] == other[f] for f in self._fields))

    def _pretty(self, l, indent, increment):
        if not self._fields:
            l.append('struct {}')
            return

        pre_indent = indent
        indent += increment
        l.append('struct {')
        for i, (f, t) in enumerate(self.items()):
            if i > 0:
                l.append(', ')
            l.append('\n')
            l.append(' ' * indent)
            l.append('{}: '.format(escape_parsable(f)))
            t._pretty(l, indent, increment)
        l.append('\n')
        l.append(' ' * pre_indent)
        l.append('}')

    def _parsable_string(self):
        return "Struct{{{}}}".format(','.join(
            '{}:{}'.format(escape_parsable(f), t._parsable_string())
            for f, t in self.items()))

    def _convert_from_json(self, x):
        from hail.utils import Struct
        return Struct(
            **{f: t._convert_from_json_na(x.get(f))
               for f, t in self.items()})

    def _convert_to_json(self, x):
        return {f: t._convert_to_json_na(x[f]) for f, t in self.items()}

    def _is_prefix_of(self, other):
        return (isinstance(other, tstruct)
                and len(self._fields) <= len(other._fields)
                and all(x == y for x, y in zip(self._field_types.values(),
                                               other._field_types.values())))

    def _concat(self, other):
        new_field_types = {}
        new_field_types.update(self._field_types)
        new_field_types.update(other._field_types)
        return tstruct(**new_field_types)

    def _insert(self, path, t):
        if not path:
            return t

        key = path[0]
        keyt = self.get(key)
        if not (keyt and isinstance(keyt, tstruct)):
            keyt = tstruct()
        return self._insert_fields(**{key: keyt._insert(path[1:], t)})

    def _insert_field(self, field, typ):
        return self._insert_fields(**{field: typ})

    def _insert_fields(self, **new_fields):
        new_field_types = {}
        new_field_types.update(self._field_types)
        new_field_types.update(new_fields)
        return tstruct(**new_field_types)

    def _drop_fields(self, fields):
        return tstruct(**{f: t for f, t in self.items() if f not in fields})

    def _select_fields(self, fields):
        return tstruct(**{f: self[f] for f in fields})

    def _index_path(self, path):
        t = self
        for p in path:
            t = t[p]
        return t

    def _rename(self, map):
        seen = {}
        new_field_types = {}

        for f0, t in self.items():
            f = map.get(f0, f0)
            if f in seen:
                raise ValueError(
                    "Cannot rename two fields to the same name: attempted to rename {} and {} both to {}"
                    .format(repr(seen[f]), repr(f0), repr(f)))
            else:
                seen[f] = f0
                new_field_types[f] = t

        return tstruct(**new_field_types)

    def unify(self, t):
        if not (isinstance(t, tstruct) and len(self) == len(t)):
            return False
        for (f1, t1), (f2, t2) in zip(self.items(), t.items()):
            if not (f1 == f2 and t1.unify(t2)):
                return False
        return True

    def subst(self):
        return tstruct(**{f: t.subst() for f, t in self.items()})

    def clear(self):
        for f, t in self.items():
            t.clear()

    def _get_context(self):
        return HailTypeContext.union(*self.values())
Exemple #6
0
                y_contigs, mt_contigs, par))

    def _init_from_java(self, jrep):
        self._jrep = jrep

    @classmethod
    def _from_java(cls, jrep):
        gr = ReferenceGenome.__new__(cls)
        gr._init_from_java(jrep)
        gr._name = None
        gr._contigs = None
        gr._lengths = None
        gr._x_contigs = None
        gr._y_contigs = None
        gr._mt_contigs = None
        gr._par = None
        gr._par_tuple = None
        super(ReferenceGenome, gr).__init__()
        ReferenceGenome._references[gr.name] = gr
        return gr

    def _check_locus(self, l_jrep):
        self._jrep.checkLocus(l_jrep)

    def _check_interval(self, interval_jrep):
        self._jrep.checkInterval(interval_jrep)


reference_genome_type = oneof(
    transformed((str, lambda x: hl.get_reference(x))), ReferenceGenome)
Exemple #7
0
import hail as hl
from hail.expr.expressions import expr_float64, expr_numeric, analyze
from hail.typecheck import typecheck, oneof, sequenceof, nullable
from hail.table import Table
from hail.matrixtable import MatrixTable
from hail.utils import wrap_to_list, new_temp_file
import numpy as np


@typecheck(weight_expr=expr_float64,
           ld_score_expr=expr_numeric,
           chi_sq_exprs=oneof(expr_float64, sequenceof(expr_float64)),
           n_samples_exprs=oneof(expr_numeric, sequenceof(expr_numeric)),
           n_blocks=int,
           two_step_threshold=int,
           n_reference_panel_variants=nullable(int))
def ld_score_regression(weight_expr,
                        ld_score_expr,
                        chi_sq_exprs,
                        n_samples_exprs,
                        n_blocks=200,
                        two_step_threshold=30,
                        n_reference_panel_variants=None) -> Table:
    r"""Estimate SNP-heritability and level of confounding biases from
    GWAS summary statistics.

    Given a set or multiple sets of genome-wide association study (GWAS)
    summary statistics, :func:`.ld_score_regression` estimates the heritability
    of a trait or set of traits and the level of confounding biases present in
    the underlying studies by regressing chi-squared statistics on LD scores,
    leveraging the model:
Exemple #8
0
    start : int or :class:`.Expression` of type :py:data:`.tint32`
        Start of range.
    stop : int or :class:`.Expression` of type :py:data:`.tint32`
        End of range.
    step : int or :class:`.Expression` of type :py:data:`.tint32`
        Step of range.

    Returns
    -------
    :class:`.NDArrayNumericExpression`
        A 1-dimensional ndarray from `start` to `stop` by `step`.
    """
    return array(hl.range(start, stop, step))


@typecheck(shape=oneof(expr_int64, tupleof(expr_int64), expr_tuple()),
           value=expr_any,
           dtype=nullable(HailType))
def full(shape, value, dtype=None):
    """Creates a hail :class:`.NDArrayNumericExpression` full of the specified value.

    Examples
    --------

    Create a 5 by 7 NDArray of type :py:data:`.tfloat64` 9s.

    >>> hl.nd.full((5, 7), 9)

    It is possible to specify a type other than :py:data:`.tfloat64` with the `dtype` argument.

    >>> hl.nd.full((5, 7), 9, dtype=hl.tint32)
Exemple #9
0
import hail as hl
from hail.linalg import BlockMatrix
from hail.typecheck import typecheck, nullable, sequenceof, oneof
from hail.expr.expressions import expr_float64, expr_numeric, expr_locus
from hail.utils import new_temp_file, wrap_to_list


@typecheck(entry_expr=expr_float64,
           locus_expr=expr_locus(),
           radius=oneof(int, float),
           coord_expr=nullable(expr_float64),
           annotation_exprs=nullable(
               oneof(expr_numeric, sequenceof(expr_numeric))),
           block_size=nullable(int))
def ld_score(entry_expr,
             locus_expr,
             radius,
             coord_expr=None,
             annotation_exprs=None,
             block_size=None) -> hl.Table:
    """Calculate LD scores.

    Example
    -------

    >>> # Load genetic data into MatrixTable
    >>> mt = hl.import_plink(bed='data/ldsc.bed',
    ...                      bim='data/ldsc.bim',
    ...                      fam='data/ldsc.fam')

    >>> # Create locus-keyed Table with numeric variant annotations
Exemple #10
0
"""

import hail as hl
from hail.expr.expressions import expr_int32, expr_int64, expr_float32, expr_float64
from hail.typecheck import typecheck, oneof, nullable
from hail.matrixtable import MatrixTable
import re
from datetime import datetime, timedelta
from hail.utils.java import Env
import numpy as np
import pandas as pd
import os


@typecheck(mt=MatrixTable,
           genotype=oneof(expr_int32, expr_int64, expr_float32, expr_float64),
           h2=oneof(nullable(float), nullable(int)),
           pi=oneof(float, int),
           is_annot_inf=bool,
           annot_coef_dict=nullable(dict),
           annot_regex=nullable(str),
           h2_normalize=bool,
           is_popstrat=bool,
           cov_coef_dict=nullable(dict),
           cov_regex=nullable(str),
           path_to_save=nullable(str))
def simulate_phenotypes(mt,
                        genotype,
                        h2=None,
                        pi=1,
                        is_annot_inf=False,
Exemple #11
0
from functools import reduce

import hail as hl
from hail.expr.functions import _ndarray
from hail.expr.functions import array as aarray
from hail.expr.types import HailType, tfloat64, tfloat32, ttuple, tndarray
from hail.typecheck import typecheck, nullable, oneof, tupleof, sequenceof
from hail.expr.expressions import (expr_int32, expr_int64, expr_tuple,
                                   expr_any, expr_array, expr_ndarray,
                                   expr_numeric, Int64Expression, cast_expr,
                                   construct_expr, expr_bool)
from hail.expr.expressions.typed_expressions import NDArrayNumericExpression
from hail.ir import NDArrayQR, NDArrayInv, NDArrayConcat, NDArraySVD, Apply

tsequenceof_nd = oneof(sequenceof(expr_ndarray()), expr_array(expr_ndarray()))
shape_type = oneof(expr_int64, tupleof(expr_int64), expr_tuple())


def array(input_array, dtype=None):
    """Construct an :class:`.NDArrayExpression`

    Examples
    --------

    >>> hl.eval(hl.nd.array([1, 2, 3, 4]))
    array([1, 2, 3, 4], dtype=int32)

    >>> hl.eval(hl.nd.array([[1, 2, 3], [4, 5, 6]]))
    array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)
Exemple #12
0
    require_col_key_str(dataset, 'rename_duplicates')
    ids = dataset.col_key[0].collect()

    mapping, new_ids = deduplicate(ids)

    if mapping:
        info(
            f'Renamed {len(mapping)} duplicate {plural("sample ID", len(mapping))}. Mangled IDs as follows:'
            + ''.join(f'\n  "{pre}" => "{post}"' for pre, post in mapping))
    else:
        info('No duplicate sample IDs found.')
    return dataset.annotate_cols(
        **{name: hl.literal(new_ids)[hl.int(hl.scan.count())]})


@typecheck(ds=oneof(Table, MatrixTable),
           intervals=expr_array(expr_interval(expr_any)),
           keep=bool)
def filter_intervals(ds, intervals, keep=True) -> Union[Table, MatrixTable]:
    """Filter rows with a list of intervals.

    Examples
    --------

    Filter to loci falling within one interval:

    >>> ds_result = hl.filter_intervals(dataset, [hl.parse_locus_interval('17:38449840-38530994')])

    Remove all loci within list of intervals:

    >>> intervals = [hl.parse_locus_interval(x) for x in ['1:50M-75M', '2:START-400000', '3-22']]
Exemple #13
0
import numpy as np

import hail as hl
from hail.typecheck import typecheck, oneof, nullable
from hail.expr.expressions import expr_locus, expr_float64, check_row_indexed
from hail.utils.java import Env


@typecheck(a=np.ndarray, radius=oneof(int, float))
def array_windows(a, radius):
    """Returns start and stop indices for window around each array value.

    Examples
    --------

    >>> hl.linalg.utils.array_windows(np.array([1, 2, 4, 4, 6, 8]), 2)
    (array([0, 0, 1, 1, 2, 4]), array([2, 4, 5, 5, 6, 6]))

    >>> hl.linalg.utils.array_windows(np.array([-10.0, -2.5, 0.0, 0.0, 1.2, 2.3, 3.0]), 2.5)
    (array([0, 1, 1, 1, 2, 2, 4]), array([1, 4, 6, 6, 7, 7, 7]))

    Notes
    -----
    For an array ``a`` in ascending order, the resulting ``starts`` and ``stops``
    arrays have the same length as ``a`` and the property that, for all indices
    ``i``, ``[starts[i], stops[i])`` is the maximal range of indices ``j`` such
    that ``a[i] - radius <= a[j] <= a[i] + radius``.

    Index ranges are start-inclusive and stop-exclusive. This function is
    especially useful in conjunction with
    :meth:`.BlockMatrix.sparsify_row_intervals`.
Exemple #14
0
import json
import re
from hail.typecheck import *
from hail.utils import wrap_to_list
from hail.utils.java import jiterable_to_list, Env, joption
from hail.typecheck import oneof, transformed
import hail as hl

rg_type = lazy()
reference_genome_type = oneof(transformed((str, lambda x: hl.get_reference(x))), rg_type)


class ReferenceGenome(object):
    """An object that represents a `reference genome <https://en.wikipedia.org/wiki/Reference_genome>`__.

    Examples
    --------

    >>> contigs = ["1", "X", "Y", "MT"]
    >>> lengths = {"1": 249250621, "X": 155270560, "Y": 59373566, "MT": 16569}
    >>> par = [("X", 60001, 2699521)]
    >>> my_ref = hl.ReferenceGenome("my_ref", contigs, lengths, "X", "Y", "MT", par)

    Notes
    -----
    Hail comes with predefined reference genomes (case sensitive!):

     - GRCh37
     - GRCh38
     - GRCm38
Exemple #15
0
from functools import reduce

import hail as hl
from hail.expr.functions import _ndarray
from hail.expr.functions import array as aarray
from hail.expr.types import HailType, tfloat64, ttuple, tndarray
from hail.typecheck import typecheck, nullable, oneof, tupleof, sequenceof
from hail.expr.expressions import (expr_int32, expr_int64, expr_tuple,
                                   expr_any, expr_array, expr_ndarray,
                                   expr_numeric, Int64Expression, cast_expr,
                                   construct_expr)
from hail.expr.expressions.typed_expressions import NDArrayNumericExpression
from hail.ir import NDArrayQR, NDArrayInv, NDArrayConcat, NDArraySVD, Apply

tsequenceof_nd = oneof(sequenceof(expr_ndarray()), expr_array(expr_ndarray()))
shape_type = oneof(expr_int64, tupleof(expr_int64), expr_tuple())


def array(input_array, dtype=None):
    """Construct an :class:`.NDArrayExpression`

    Examples
    --------

    >>> hl.eval(hl.nd.array([1, 2, 3, 4]))
    array([1, 2, 3, 4], dtype=int32)

    >>> hl.eval(hl.nd.array([[1, 2, 3], [4, 5, 6]]))
    array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)
Exemple #16
0
ldsc simulation framework

@author: nbaya
"""

import hail as hl
from hail.expr.expressions import expr_int32, expr_int64, expr_float32, expr_float64
from hail.typecheck import typecheck, oneof, nullable
from hail.matrixtable import MatrixTable
import re
from datetime import datetime, timedelta

@typecheck(mt=MatrixTable, 
           genotype=oneof(expr_int32,
                          expr_int64, 
                          expr_float32, 
                          expr_float64),
           h2=oneof(nullable(float),
                    nullable(int)),
           pi=oneof(float,int),
           is_annot_inf=bool,
           annot_coef_dict=nullable(dict),
           annot_regex=nullable(str),
           h2_normalize=bool,
           is_popstrat=bool,
           cov_coef_dict=nullable(dict),
           cov_regex=nullable(str),
           path_to_save=nullable(str))
def simulate_phenotypes(mt, genotype, h2=None, pi=1, is_annot_inf=False, annot_coef_dict=None,
                        annot_regex=None,h2_normalize=True, is_popstrat=False, cov_coef_dict=None,
                        cov_regex=None, path_to_save=None):
Exemple #17
0
class LinearMixedModel(object):
    r"""Class representing a linear mixed model.

    .. include:: ../_templates/experimental.rst

    :class:`LinearMixedModel` represents a linear model of the form

    .. math::

        y \sim \mathrm{N}(X \beta, \, \sigma^2 K + \tau^2 I)

    where

    - :math:`\mathrm{N}` is a :math:`n`-dimensional normal distribution.
    - :math:`y` is a known vector of :math:`n` observations.
    - :math:`X` is a known :math:`n \times p` design matrix for :math:`p` fixed effects.
    - :math:`K` is a known :math:`n \times n` positive semi-definite kernel.
    - :math:`I` is the :math:`n \times n` identity matrix.
    - :math:`\beta` is a :math:`p`-parameter vector of fixed effects.
    - :math:`\sigma^2` is the variance parameter on :math:`K`.
    - :math:`\tau^2` is the variance parameter on :math:`I`.

    In particular, the residuals for the :math:`i^\mathit{th}` and :math:`j^\mathit{th}`
    observations have covariance :math:`\sigma^2 K_{ij}` for :math:`i \neq j`.

    This model is equivalent to a
    `mixed model <https://en.wikipedia.org/wiki/Mixed_model>`__
    of the form

    .. math::

        y = X \beta + Z u + \epsilon

    by setting :math:`K = ZZ^T` where

    - :math:`Z` is a known :math:`n \times r` design matrix for :math:`r` random effects.
    - :math:`u` is a :math:`r`-vector of random effects drawn from :math:`\mathrm{N}(0, \sigma^2 I)`.
    - :math:`\epsilon` is a :math:`n`-vector of random errors drawn from :math:`\mathrm{N}(0, \tau^2 I)`.

    However, :class:`LinearMixedModel` does not itself realize :math:`K` as a linear kernel
    with respect to random effects, nor does it take :math:`K` explicitly as input. Rather,
    via the eigendecomposion :math:`K = U S U^T`, the the class leverages a third, decorrelated
    form of the model

    .. math::

        Py \sim \mathrm{N}(PX \beta, \, \sigma^2 (\gamma S + I))

    where

    - :math:`P = U^T: \mathbb{R}^n \rightarrow \mathbb{R}^n` is an orthonormal transformation
      that decorrelates the observations. The rows of :math:`P` are an eigenbasis for :math:`K`.
    - :math:`S` is the :math:`n \times n` diagonal matrix of corresponding eigenvalues.
    - :math:`\gamma = \frac{\sigma^2}{\tau^2}` is the ratio of variance parameters.

    Hence, the triple :math:`(Py, PX, S)` determines the probability
    of the observations for any choice of model parameters, and is
    therefore sufficient for inference.
    This triple, with S encoded as a vector, is the default
    ("full-rank") initialization of the class.

    :class:`LinearMixedModel` also provides an efficient strategy to fit the
    model above with :math:`K` replaced by its rank-:math:`r` approximation
    :math:`K_r = P_r^T S_r P_r` where

    - :math:`P_r: \mathbb{R}^n \rightarrow \mathbb{R}^r` has orthonormal rows
      consisting of the top :math:`r`  eigenvectors of :math:`K`.
    - :math:`S_r` is the :math:`r \times r` diagonal matrix of corresponding
      non-zero eigenvalues.

    For this low-rank model, the quintuple :math:`(P_r y, P_r X, S_r, y, X)`
    is similarly sufficient for inference and corresponds to the "low-rank"
    initialization of the class. Morally, :math:`y` and :math:`X` are
    required for low-rank inference because the diagonal :math:`\gamma S + I`
    is always full-rank.

    If :math:`K` actually has rank :math:`r`, then :math:`K = K_r`
    and the low-rank and full-rank models are equivalent.
    Hence low-rank inference provides a more efficient, equally-exact
    algorithm for fitting the full-rank model.
    This situation arises, for example, when :math:`K` is the linear kernel
    of a mixed model with fewer random effects than observations.

    Even when :math:`K` has full rank, using a lower-rank approximation may
    be an effective from of regularization, in addition to boosting
    computational efficiency.

    **Initialization**

    The class may be initialized directly or with one of two methods:

    - :meth:`from_kinship` takes :math:`y`, :math:`X`, and :math:`K` as ndarrays.
      The model is always full-rank.

    - :meth:`from_random_effects` takes :math:`y` and :math:`X` as ndarrays and
      :math:`Z` as an ndarray or block matrix. The model is full-rank if and
      only if :math:`n \leq m`.

    Direct full-rank initialization takes :math:`Py`, :math:`PX`, and :math:`S`
    as ndarrays. The following class attributes are set:

    .. list-table::
      :header-rows: 1

      * - Attribute
        - Type
        - Value
      * - `low_rank`
        - bool
        - ``False``
      * - `n`
        - int
        - Number of observations :math:`n`
      * - `f`
        - int
        - Number of fixed effects :math:`p`
      * - `r`
        - int
        - Effective number of random effects, must equal :math:`n`
      * - `py`
        - ndarray
        - Rotated response vector :math:`P y` with shape :math:`(n)`
      * - `px`
        - ndarray
        - Rotated design matrix :math:`P X` with shape :math:`(n, p)`
      * - `s`
        - ndarray
        - Eigenvalues vector :math:`S` of :math:`K` with shape :math:`(n)`
      * - `p_path`
        - str
        - Path at which :math:`P` is stored as a block matrix

    Direct low-rank initialization takes :math:`P_r y`, :math:`P_r X`, :math:`S_r`,
    :math:`y`, and :math:`X` as ndarrays. The following class attributes are set:

    .. list-table::
      :header-rows: 1

      * - Attribute
        - Type
        - Value
      * - `low_rank`
        - bool
        - ``True``
      * - `n`
        - int
        - Number of observations :math:`n`
      * - `f`
        - int
        - Number of fixed effects :math:`p`
      * - `r`
        - int
        - Effective number of random effects, must be less than :math:`n`
      * - `py`
        - ndarray
        - Projected response vector :math:`P_r y` with shape :math:`(r)`
      * - `px`
        - ndarray
        - Projected design matrix :math:`P_r X` with shape :math:`(r, p)`
      * - `s`
        - ndarray
        - Eigenvalues vector :math:`S_r` of :math:`K_r` with shape :math:`(r)`
      * - `y`
        - ndarray
        - Response vector with shape :math:`(n)`
      * - `x`
        - ndarray
        - Design matrix with shape :math:`(n, p)`
      * - `p_path`
        - str
        - Path at which :math:`P` is stored as a block matrix

    **Fitting the model**

    :meth:`fit` uses `restricted maximum likelihood
    <https://en.wikipedia.org/wiki/Restricted_maximum_likelihood>`__ (REML)
    to estimate :math:`(\beta, \sigma^2, \tau^2)`.

    This is done by numerical optimization of the univariate function
    :meth:`compute_neg_log_reml`, which itself optimizes REML constrained to a
    fixed ratio of variance parameters. Each evaluation of
    :meth:`compute_neg_log_reml` has computational complexity

    .. math::

      \mathit{O}(rp^2 + p^3).

    :meth:`fit` adds the following attributes at this estimate.

    .. list-table::
      :header-rows: 1

      * - Attribute
        - Type
        - Value
      * - `beta`
        - ndarray
        - :math:`\beta`
      * - `sigma_sq`
        - float
        - :math:`\sigma^2`
      * - `tau_sq`
        - float
        - :math:`\tau^2`
      * - `gamma`
        - float
        - :math:`\gamma = \frac{\sigma^2}{\tau^2}`
      * - `log_gamma`
        - float
        - :math:`\log{\gamma}`
      * - `h_sq`
        - float
        - :math:`\mathit{h}^2 = \frac{\sigma^2}{\sigma^2 + \tau^2}`
      * - `h_sq_standard_error`
        - float
        - asymptotic estimate of :math:`\mathit{h}^2` standard error

    **Testing alternative models**

    The model is also equivalent to its augmentation

    .. math::

        y \sim \mathrm{N}\left(x_\star\beta_\star + X \beta, \, \sigma^2 K + \tau^2 I\right)

    by an additional covariate of interest :math:`x_\star` under the
    null hypothesis that the corresponding fixed effect parameter
    :math:`\beta_\star` is zero. Similarly to initialization, full-rank testing
    of the alternative hypothesis :math:`\beta_\star \neq 0` requires
    :math:`P x_\star`, whereas the low-rank testing requires :math:`P_r x_\star`
    and :math:`x_\star`.

    After running :meth:`fit` to fit the null model, one can test each of a
    collection of alternatives using either of two implementations of the
    likelihood ratio test:

    - :meth:`fit_alternatives_numpy` takes one or two ndarrays. It is a pure Python
      method that evaluates alternatives serially on master.

    - :meth:`fit_alternatives` takes one or two paths to block matrices. It
      evaluates alternatives in parallel on the workers.

    Per alternative, both have computational complexity

    .. math::

      \mathit{O}(rp + p^3).

    Parameters
    ----------
    py: :class:`ndarray`
        Projected response vector :math:`P_r y` with shape :math:`(r)`.
    px: :class:`ndarray`
        Projected design matrix :math:`P_r X` with shape :math:`(r, p)`.
    s: :class:`ndarray`
        Eigenvalues vector :math:`S` with shape :math:`(r)`.
    y: :class:`ndarray`, optional
        Response vector with shape :math:`(n)`.
        Include for low-rank inference.
    x: :class:`ndarray`, optional
        Design matrix with shape :math:`(n, p)`.
        Include for low-rank inference.
    p_path: :obj:`str`, optional
        Path at which :math:`P` has been stored as a block matrix.
    """
    @typecheck_method(py=np.ndarray,
                      px=np.ndarray,
                      s=np.ndarray,
                      y=nullable(np.ndarray),
                      x=nullable(np.ndarray),
                      p_path=nullable(str))
    def __init__(self, py, px, s, y=None, x=None, p_path=None):
        if y is None and x is None:
            low_rank = False
        elif y is not None and x is not None:
            low_rank = True
        else:
            raise ValueError(
                'for low-rank, set both y and x; for full-rank, do not set y or x.'
            )

        _check_dims(py, 'py', 1)
        _check_dims(px, 'px', 2)
        _check_dims(s, 's', 1)

        r = s.size
        f = px.shape[1]

        if py.size != r:
            raise ValueError("py and s must have the same size")
        if px.shape[0] != r:
            raise ValueError(
                "px must have the same number of rows as the size of s")
        if low_rank:
            _check_dims(y, 'y', 1)
            _check_dims(x, 'x', 2)
            n = y.size
            if n <= r:
                raise ValueError("size of y must be larger than the size of s")
            if x.shape[0] != n:
                raise ValueError(
                    "x must have the same number of rows as the size of y")
            if x.shape[1] != f:
                raise ValueError("px and x must have the same number columns")
        else:
            n = r

        if p_path is not None:
            n_rows, n_cols = BlockMatrix.read(p_path).shape
            if n_cols != n:
                raise ValueError(
                    "LinearMixedModel: Number of columns in the block "
                    f"matrix at 'p_path' ({n_cols}) must equal "
                    f"the size of 'y' ({n})")
            if n_rows != r:
                raise ValueError(
                    "LinearMixedModel: Number of rows in the block "
                    f"matrix at 'p_path' ({n_rows}) must equal "
                    f"the size of 'py' ({r})")

        self.low_rank = low_rank
        self.n = n
        self.f = f
        self.r = r
        self.py = py
        self.px = px
        self.s = s
        self.y = y
        self.x = x
        self.p_path = p_path

        self._check_dof()

        self.beta = None
        self.sigma_sq = None
        self.tau_sq = None
        self.gamma = None
        self.log_gamma = None
        self.h_sq = None
        self.h_sq_standard_error = None
        self.optimize_result = None

        self._fitted = False

        if low_rank:
            self._yty = y @ y
            self._xty = x.T @ y
            self._xtx = x.T @ x

        self._dof = n - f
        self._d = None
        self._ydy = None
        self._xdy = None
        self._xdx = None

        self._dof_alt = n - (f + 1)
        self._d_alt = None
        self._ydy_alt = None
        self._xdy_alt = np.zeros(f + 1)
        self._xdx_alt = np.zeros((f + 1, f + 1))

        self._residual_sq = None

        self._scala_model = None

    def _reset(self):
        self._fitted = False

        self.beta = None
        self.sigma_sq = None
        self.tau_sq = None
        self.gamma = None
        self.log_gamma = None
        self.h_sq = None
        self.h_sq_standard_error = None
        self.optimize_result = None

    def compute_neg_log_reml(self, log_gamma, return_parameters=False):
        r"""Compute negative log REML constrained to a fixed value
        of :math:`\log{\gamma}`.

        This function computes the triple :math:`(\beta, \sigma^2, \tau^2)` with
        :math:`\gamma = \frac{\sigma^2}{\tau^2}` at which the restricted
        likelihood is maximized and returns the negative of the restricted log
        likelihood at these parameters (shifted by the constant defined below).

        The implementation has complexity :math:`\mathit{O}(rp^2 + p^3)` and is
        inspired by `FaST linear mixed models for genome-wide association studies (2011)
        <https://www.nature.com/articles/nmeth.1681>`__.

        The formulae follow from `Bayesian Inference for Variance Components Using Only Error Contrasts (1974)
        <http://faculty.dbmi.pitt.edu/day/Bioinf2132-advanced-Bayes-and-R/previousDocuments/Bioinf2132-documents-2016/2016-11-22/Harville-1974.pdf>`__.
        Harville derives that for fixed covariance :math:`V`, the restricted
        likelihood of the variance parameter :math:`V` in the model

        .. math::

          y \sim \mathrm{N}(X \beta, \, V)

        is given by

        .. math::

          (2\pi)^{-\frac{1}{2}(n - p)}
          \det(X^T X)^\frac{1}{2}
          \det(V)^{-\frac{1}{2}}
          \det(X^T V^{-1} X)^{-\frac{1}{2}}
          e^{-\frac{1}{2}(y - X\hat\beta)^T V^{-1}(y - X\hat\beta)}.

        with

        .. math::

          \hat\beta = (X^T V^{-1} X)^{-1} X^T V^{-1} y.

        In our case, the variance is

        .. math::

          V = \sigma^2 K + \tau^2 I = \sigma^2 (K + \gamma^{-1} I)

        which is determined up to scale by any fixed value of the ratio
        :math:`\gamma`. So for input :math:`\log \gamma`, the
        negative restricted log likelihood is minimized at
        :math:`(\hat\beta, \hat\sigma^2)` with :math:`\hat\beta` as above and

        .. math::

           \hat\sigma^2 = \frac{1}{n - p}(y - X\hat\beta)^T (K + \gamma^{-1} I)^{-1}(y - X\hat\beta).

        For :math:`\hat V` at this :math:`(\hat\beta, \hat\sigma^2, \gamma)`,
        the exponent in the likelihood reduces to :math:`-\frac{1}{2}(n-p)`, so
        the negative restricted log likelihood may be expressed as

        .. math::

          \frac{1}{2}\left(\log \det(\hat V) + \log\det(X^T \hat V^{-1} X)\right) + C

        where

        .. math::

          C = \frac{1}{2}\left(n - p + (n - p)\log(2\pi) - \log\det(X^T X)\right)

        only depends on :math:`X`. :meth:`compute_neg_log_reml` returns the value of
        the first term, omitting the constant term.

        Parameters
        ----------
        log_gamma: :obj:`float`
            Value of :math:`\log{\gamma}`.
        return_parameters:
            If ``True``, also return :math:`\beta`, :math:`\sigma^2`,
            and :math:`\tau^2`.

        Returns
        -------
        :obj:`float` or (:obj:`float`, :class:`ndarray`, :obj:`float`, :obj:`float`)
            If `return_parameters` is ``False``, returns (shifted) negative log REML.
            Otherwise, returns (shifted) negative log REML, :math:`\beta`, :math:`\sigma^2`,
            and :math:`\tau^2`.
        """
        from scipy.linalg import solve, LinAlgError

        gamma = np.exp(log_gamma)
        d = 1 / (self.s + 1 / gamma)
        logdet_d = np.sum(np.log(d)) + (self.n - self.r) * log_gamma

        if self.low_rank:
            d -= gamma
            dpy = d * self.py
            ydy = self.py @ dpy + gamma * self._yty
            xdy = self.px.T @ dpy + gamma * self._xty
            xdx = (self.px.T * d) @ self.px + gamma * self._xtx
        else:
            dpy = d * self.py
            ydy = self.py @ dpy
            xdy = self.px.T @ dpy
            xdx = (self.px.T * d) @ self.px

        try:
            beta = solve(xdx, xdy, assume_a='pos')
            residual_sq = ydy - xdy.T @ beta
            sigma_sq = residual_sq / self._dof
            tau_sq = sigma_sq / gamma
            neg_log_reml = (np.linalg.slogdet(xdx)[1] - logdet_d +
                            self._dof * np.log(sigma_sq)) / 2

            self._d, self._ydy, self._xdy, self._xdx = d, ydy, xdy, xdx  # used in fit

            if return_parameters:
                return neg_log_reml, beta, sigma_sq, tau_sq
            else:
                return neg_log_reml
        except LinAlgError as e:
            raise Exception(
                'linear algebra error while solving for REML estimate') from e

    @typecheck_method(log_gamma=nullable(numeric),
                      bounds=tupleof(numeric),
                      tol=float,
                      maxiter=int)
    def fit(self, log_gamma=None, bounds=(-8.0, 8.0), tol=1e-8, maxiter=500):
        r"""Find the triple :math:`(\beta, \sigma^2, \tau^2)` maximizing REML.

        This method sets the attributes `beta`, `sigma_sq`, `tau_sq`, `gamma`,
        `log_gamma`, `h_sq`, and `h_sq_standard_error` as described in the
        top-level class documentation.

        If `log_gamma` is provided, :meth:`fit` finds the REML solution
        with :math:`\log{\gamma}` constrained to this value. In this case,
        `h_sq_standard_error` is ``None`` since `h_sq` is not estimated.

        Otherwise, :meth:`fit` searches for the value of :math:`\log{\gamma}`
        that minimizes :meth:`compute_neg_log_reml`, and also sets the attribute
        `optimize_result` of type `scipy.optimize.OptimizeResult
        <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html>`__.

        Parameters
        ----------
        log_gamma: :obj:`float`, optional
            If provided, the solution is constrained to have this value of
            :math:`\log{\gamma}`.
        bounds: :obj:`float`, :obj:`float`
            Lower and upper bounds for :math:`\log{\gamma}`.
        tol: :obj:`float`
            Absolute tolerance for optimizing :math:`\log{\gamma}`.
        maxiter: :obj:`float`
            Maximum number of iterations for optimizing :math:`\log{\gamma}`.
        """
        if self._fitted:
            self._reset()

        fit_log_gamma = True if log_gamma is None else False

        if fit_log_gamma:
            from scipy.optimize import minimize_scalar

            self.optimize_result = minimize_scalar(self.compute_neg_log_reml,
                                                   method='bounded',
                                                   bounds=bounds,
                                                   options={
                                                       'xatol': tol,
                                                       'maxiter': maxiter
                                                   })

            if self.optimize_result.success:
                if self.optimize_result.x - bounds[0] < 0.001:
                    raise Exception(
                        "failed to fit log_gamma: optimum within 0.001 of lower bound."
                    )
                elif bounds[1] - self.optimize_result.x < 0.001:
                    raise Exception(
                        "failed to fit log_gamma: optimum within 0.001 of upper bound."
                    )
                else:
                    self.log_gamma = self.optimize_result.x
            else:
                raise Exception(
                    f'failed to fit log_gamma:\n  {self.optimize_result}')
        else:
            self.log_gamma = log_gamma

        _, self.beta, self.sigma_sq, self.tau_sq = self.compute_neg_log_reml(
            self.log_gamma, return_parameters=True)

        self.gamma = np.exp(self.log_gamma)
        self.h_sq = self.sigma_sq / (self.sigma_sq + self.tau_sq)

        self._residual_sq = self.sigma_sq * self._dof
        self._d_alt = self._d
        self._ydy_alt = self._ydy
        self._xdy_alt[1:] = self._xdy
        self._xdx_alt[1:, 1:] = self._xdx

        if fit_log_gamma:
            self.h_sq_standard_error = self._estimate_h_sq_standard_error()

        self._fitted = True

    def _estimate_h_sq_standard_error(self):
        epsilon = 1e-4  # parabolic interpolation radius in log_gamma space
        lg = self.log_gamma + np.array([-epsilon, 0.0, epsilon])
        h2 = 1 / (1 + np.exp(-lg))
        nll = [self.compute_neg_log_reml(lgi) for lgi in lg]

        if nll[1] > nll[0] or nll[1] > nll[2]:
            i = 0 if nll[1] > nll[0] else 2
            raise Exception(
                f'Minimum of negative log likelihood fit as {nll[1]} at log_gamma={lg[1]},'
                f'\n    but found smaller value of {nll[i]} at log_gamma={lg[i]}.'
                f'\n    Investigate by plotting the negative log likelihood function.'
            )

        # Asymptotically near MLE, nLL = a * h2^2 + b * h2 + c with a = 1 / (2 * se^2)
        # By Lagrange interpolation:
        a = ((h2[2] * (nll[1] - nll[0]) + h2[1] * (nll[0] - nll[2]) + h2[0] *
              (nll[2] - nll[1])) / ((h2[1] - h2[0]) * (h2[0] - h2[2]) *
                                    (h2[2] - h2[1])))

        return 1 / np.sqrt(2 * a)

    def h_sq_normalized_lkhd(self):
        r"""Estimate the normalized likelihood of :math:`\mathit{h}^2` over the
        discrete grid of percentiles.

        Examples
        --------
        Plot the estimated normalized likelihood function:

        >>> import matplotlib.pyplot as plt                     # doctest: +SKIP
        >>> plt.plot(range(101), model.h_sq_normalized_lkhd())  # doctest: +SKIP

        Notes
        -----
        This method may be used to visualize the approximate posterior on
        :math:`\mathit{h}^2` under a flat prior.

        The resulting ndarray ``a`` has length 101 with ``a[i]`` equal to the
        maximum likelihood over all :math:`\beta` and :math:`\sigma^2` with
        :math:`\mathit{h}^2` constrained to ``i / 100``. The values for
        ``1 <= i <= 99`` are normalized to sum to 1, and ``a[0]`` and ``a[100]``
        are set to ``nan``.

        Returns
        -------
        :class:`ndarray` of :obj:`float64`
            Normalized likelihood values for :math:`\mathit{h}^2`.
        """
        log_lkhd = np.zeros(101, dtype=np.float64)
        log_lkhd[0], log_lkhd[100] = np.nan, np.nan

        for h2 in range(1, 100):
            gamma = h2 / (100.0 - h2)
            log_lkhd[h2] = -self.compute_neg_log_reml(np.log(gamma))

        log_lkhd -= np.max(log_lkhd[1:-1])
        lkhd = np.exp(log_lkhd)
        lkhd /= np.sum(lkhd[1:-1])
        return lkhd

    @typecheck_method(pa_t_path=str,
                      a_t_path=nullable(str),
                      partition_size=nullable(int))
    def fit_alternatives(self, pa_t_path, a_t_path=None, partition_size=None):
        r"""Fit and test alternative model for each augmented design matrix in parallel.

        Notes
        -----
        The alternative model is fit using REML constrained to the value of
        :math:`\gamma` set by :meth:`fit`.

        The likelihood ratio test of fixed effect parameter :math:`\beta_\star`
        uses (non-restricted) maximum likelihood:

        .. math::

          \chi^2 = 2 \log\left(\frac{
          \max_{\beta_\star, \beta, \sigma^2}\mathrm{N}
          (y \, | \, x_\star \beta_\star + X \beta; \sigma^2(K + \gamma^{-1}I)}
          {\max_{\beta, \sigma^2} \mathrm{N}
          (y \, | \, x_\star \cdot 0 + X \beta; \sigma^2(K + \gamma^{-1}I)}
          \right)

        The p-value is given by the tail probability under a chi-squared
        distribution with one degree of freedom.

        The resulting table has the following fields:

        .. list-table::
          :header-rows: 1

          * - Field
            - Type
            - Value
          * - `idx`
            - int64
            - Index of augmented design matrix.
          * - `beta`
            - float64
            - :math:`\beta_\star`
          * - `sigma_sq`
            - float64
            - :math:`\sigma^2`
          * - `chi_sq`
            - float64
            - :math:`\chi^2`
          * - `p_value`
            - float64
            - p-value

        :math:`(P_r A)^T` and :math:`A^T` (if given) must have the same number
        of rows (augmentations). These rows are grouped into partitions for
        parallel processing. The number of partitions equals the ceiling of
        ``n_rows / partition_size``, and should be at least the number or cores
        to make use of all cores. By default, there is one partition per row of
        blocks in :math:`(P_r A)^T`. Setting the partition size to an exact
        (rather than approximate) divisor or multiple of the block size reduces
        superfluous shuffling of data.

        The number of columns in each block matrix must be less than :math:`2^{31}`.

        Warning
        -------
        The block matrices must be stored in row-major format, as results
        from :meth:`.BlockMatrix.write` with ``force_row_major=True`` and from
        :meth:`.BlockMatrix.write_from_entry_expr`. Otherwise, this method
        will produce an error message.

        Parameters
        ----------
        pa_t_path: :obj:`str`
            Path to block matrix :math:`(P_r A)^T` with shape :math:`(m, r)`.
            Each row is a projected augmentation :math:`P_r x_\star` of :math:`P_r X`.
        a_t_path: :obj:`str`, optional
            Path to block matrix :math:`A^T` with shape :math:`(m, n)`.
            Each row is an augmentation :math:`x_\star` of :math:`X`.
            Include for low-rank inference.
        partition_size: :obj:`int`, optional
            Number of rows to process per partition.
            Default given by block size of :math:`(P_r A)^T`.

        Returns
        -------
        :class:`.Table`
            Table of results for each augmented design matrix.
        """
        from hail.table import Table

        self._check_dof(self.f + 1)

        if self.low_rank and a_t_path is None:
            raise ValueError('model is low-rank so a_t is required.')
        elif not (self.low_rank or a_t_path is None):
            raise ValueError('model is full-rank so a_t must not be set.')

        if self._scala_model is None:
            self._set_scala_model()

        backend = Env.spark_backend('LinearMixedModel.fit_alternatives')
        jfs = backend.fs._jfs

        if partition_size is None:
            block_size = Env.hail().linalg.BlockMatrix.readMetadata(
                jfs, pa_t_path).blockSize()
            partition_size = block_size
        elif partition_size <= 0:
            raise ValueError(
                f'partition_size must be positive, found {partition_size}')

        jpa_t = Env.hail().linalg.RowMatrix.readBlockMatrix(
            jfs, pa_t_path, partition_size)

        if a_t_path is None:
            maybe_ja_t = None
        else:
            maybe_ja_t = Env.hail().linalg.RowMatrix.readBlockMatrix(
                jfs, a_t_path, partition_size)

        return Table._from_java(
            backend._jbackend.pyFitLinearMixedModel(self._scala_model, jpa_t,
                                                    maybe_ja_t))

    @typecheck_method(pa=np.ndarray,
                      a=nullable(np.ndarray),
                      return_pandas=bool)
    def fit_alternatives_numpy(self, pa, a=None, return_pandas=False):
        r"""Fit and test alternative model for each augmented design matrix.

        Notes
        -----
        This Python-only implementation runs serially on master. See
        the scalable implementation :meth:`fit_alternatives` for documentation
        of the returned table.

        Parameters
        ----------
        pa: :class:`ndarray`
            Projected matrix :math:`P_r A` of alternatives with shape :math:`(r, m)`.
            Each column is a projected augmentation :math:`P_r x_\star` of :math:`P_r X`.
        a: :class:`ndarray`, optional
            Matrix :math:`A` of alternatives with shape :math:`(n, m)`.
            Each column is an augmentation :math:`x_\star` of :math:`X`.
            Required for low-rank inference.
        return_pandas: :obj:`bool`
            If true, return pandas dataframe. If false, return Hail table.

        Returns
        -------
        :class:`.Table` or :class:`.pandas.DataFrame`
            Table of results for each augmented design matrix.
        """
        self._check_dof(self.f + 1)

        if not self._fitted:
            raise Exception("null model is not fit. Run 'fit' first.")

        n_cols = pa.shape[1]
        assert pa.shape[0] == self.r

        if self.low_rank:
            assert a.shape[0] == self.n and a.shape[1] == n_cols
            data = [(i, ) + self._fit_alternative_numpy(pa[:, i], a[:, i])
                    for i in range(n_cols)]
        else:
            data = [(i, ) + self._fit_alternative_numpy(pa[:, i], None)
                    for i in range(n_cols)]

        df = pd.DataFrame.from_records(
            data, columns=['idx', 'beta', 'sigma_sq', 'chi_sq', 'p_value'])

        if return_pandas:
            return df
        else:
            return Table.from_pandas(df, key='idx')

    def _fit_alternative_numpy(self, pa, a):
        from scipy.linalg import solve, LinAlgError
        from scipy.stats.distributions import chi2

        gamma = self.gamma
        dpa = self._d_alt * pa

        # single thread => no need to copy
        ydy = self._ydy_alt
        xdy = self._xdy_alt
        xdx = self._xdx_alt

        if self.low_rank:
            xdy[0] = self.py @ dpa + gamma * (self.y @ a)
            xdx[0, 0] = pa @ dpa + gamma * (a @ a)
            xdx[0, 1:] = self.px.T @ dpa + gamma * (self.x.T @ a)
        else:
            xdy[0] = self.py @ dpa
            xdx[0, 0] = pa @ dpa
            xdx[0, 1:] = self.px.T @ dpa

        try:
            beta = solve(xdx, xdy, assume_a='pos')  # only uses upper triangle
            residual_sq = ydy - xdy.T @ beta
            sigma_sq = residual_sq / self._dof_alt
            chi_sq = self.n * np.log(
                self._residual_sq / residual_sq)  # division => precision
            p_value = chi2.sf(chi_sq, 1)

            return beta[0], sigma_sq, chi_sq, p_value
        except LinAlgError:
            return tuple(4 * [float('nan')])

    def _set_scala_model(self):
        from hail.utils.java import Env
        from hail.linalg import _jarray_from_ndarray, _breeze_from_ndarray

        if not self._fitted:
            raise Exception("null model is not fit. Run 'fit' first.")

        self._scala_model = Env.hail().stats.LinearMixedModel.pyApply(
            self.gamma, self._residual_sq, _jarray_from_ndarray(self.py),
            _breeze_from_ndarray(self.px), _jarray_from_ndarray(self._d_alt),
            self._ydy_alt, _jarray_from_ndarray(self._xdy_alt),
            _breeze_from_ndarray(self._xdx_alt),
            _jarray_from_ndarray(self.y) if self.low_rank else None,
            _breeze_from_ndarray(self.x) if self.low_rank else None)

    def _check_dof(self, f=None):
        if f is None:
            f = self.f
        dof = self.n - f
        if dof <= 0:
            raise ValueError(
                f"{self.n} {plural('observation', self.n)} with {f} fixed {plural('effect', f)} "
                f"implies {dof} {plural('degree', dof)} of freedom. Must be positive."
            )

    @classmethod
    @typecheck_method(y=np.ndarray,
                      x=np.ndarray,
                      k=np.ndarray,
                      p_path=nullable(str),
                      overwrite=bool)
    def from_kinship(cls, y, x, k, p_path=None, overwrite=False):
        r"""Initializes a model from :math:`y`, :math:`X`, and :math:`K`.

        Examples
        --------
        >>> from hail.stats import LinearMixedModel
        >>> y = np.array([0.0, 1.0, 8.0, 9.0])
        >>> x = np.array([[1.0, 0.0],
        ...               [1.0, 2.0],
        ...               [1.0, 1.0],
        ...               [1.0, 4.0]])
        >>> k = np.array([[ 1.        , -0.8727875 ,  0.96397335,  0.94512946],
        ...               [-0.8727875 ,  1.        , -0.93036112, -0.97320323],
        ...               [ 0.96397335, -0.93036112,  1.        ,  0.98294169],
        ...               [ 0.94512946, -0.97320323,  0.98294169,  1.        ]])
        >>> model, p = LinearMixedModel.from_kinship(y, x, k)
        >>> model.fit()
        >>> model.h_sq  # doctest: +SKIP_OUTPUT_CHECK
        0.2525148830695317

        >>> model.s  # doctest: +SKIP_OUTPUT_CHECK
        array([3.83501295, 0.13540343, 0.02454114, 0.00504248])

        Truncate to a rank :math:`r=2` model:

        >>> r = 2
        >>> s_r = model.s[:r]
        >>> p_r = p[:r, :]
        >>> model_r = LinearMixedModel(p_r @ y, p_r @ x, s_r, y, x)
        >>> model.fit()
        >>> model.h_sq  # doctest: +SKIP_OUTPUT_CHECK
        0.25193197591429695

        Notes
        -----
        This method eigendecomposes :math:`K = P^T S P` on the master and
        returns ``LinearMixedModel(p @ y, p @ x, s)`` and ``p``.

        The performance of eigendecomposition depends critically on the
        number of master cores and the NumPy / SciPy configuration, viewable
        with ``np.show_config()``. For Intel machines, we recommend installing
        the `MKL <https://anaconda.org/anaconda/mkl>`__ package for Anaconda.

        `k` must be positive semi-definite; symmetry is not checked as only the
        lower triangle is used.

        Parameters
        ----------
        y: :class:`ndarray`
            :math:`n` vector of observations.
        x: :class:`ndarray`
            :math:`n \times p` matrix of fixed effects.
        k: :class:`ndarray`
            :math:`n \times n` positive semi-definite kernel :math:`K`.
        p_path: :obj:`str`, optional
            Path at which to write :math:`P` as a block matrix.
        overwrite: :obj:`bool`
            If ``True``, overwrite an existing file at `p_path`.

        Returns
        -------
        model: :class:`LinearMixedModel`
            Model constructed from :math:`y`, :math:`X`, and :math:`K`.
        p: :class:`ndarray`
            Matrix :math:`P` whose rows are the eigenvectors of :math:`K`.
        """
        _check_dims(y, "y", 1)
        _check_dims(x, "x", 2)
        _check_dims(k, "k", 2)

        n = k.shape[0]
        if k.shape[1] != n:
            raise ValueError("from_kinship: 'k' must be a square matrix")
        if y.shape[0] != n:
            raise ValueError("from_kinship: 'y' and 'k' must have the same "
                             "number of rows")
        if x.shape[0] != n:
            raise ValueError("from_kinship: 'x' and 'k' must have the same "
                             "number of rows")

        s, u = hl.linalg._eigh(k)
        if s[0] < -1e12 * s[-1]:
            raise Exception("from_kinship: smallest eigenvalue of 'k' is"
                            f"negative: {s[0]}")

        # flip singular values to descending order
        s = np.flip(s, axis=0)
        u = np.fliplr(u)
        p = u.T
        if p_path:
            BlockMatrix.from_numpy(p).write(p_path, overwrite=overwrite)

        model = LinearMixedModel(p @ y, p @ x, s, p_path=p_path)
        return model, p

    @classmethod
    @typecheck_method(y=np.ndarray,
                      x=np.ndarray,
                      z=oneof(np.ndarray, hl.linalg.BlockMatrix),
                      p_path=nullable(str),
                      overwrite=bool,
                      max_condition_number=float,
                      complexity_bound=int)
    def from_random_effects(cls,
                            y,
                            x,
                            z,
                            p_path=None,
                            overwrite=False,
                            max_condition_number=1e-10,
                            complexity_bound=8192):
        r"""Initializes a model from :math:`y`, :math:`X`, and :math:`Z`.

        Examples
        --------
        >>> from hail.stats import LinearMixedModel
        >>> y = np.array([0.0, 1.0, 8.0, 9.0])
        >>> x = np.array([[1.0, 0.0],
        ...               [1.0, 2.0],
        ...               [1.0, 1.0],
        ...               [1.0, 4.0]])
        >>> z = np.array([[0.0, 0.0, 1.0],
        ...               [0.0, 1.0, 2.0],
        ...               [1.0, 2.0, 4.0],
        ...               [2.0, 4.0, 8.0]])
        >>> model, p = LinearMixedModel.from_random_effects(y, x, z)
        >>> model.fit()
        >>> model.h_sq  # doctest: +SKIP_OUTPUT_CHECK
        0.38205307244271675

        Notes
        -----
        If :math:`n \leq m`, the returned model is full rank.

        If :math:`n > m`, the returned model is low rank. In this case only,
        eigenvalues less than or equal to `max_condition_number` times the top
        eigenvalue are dropped from :math:`S`, with the corresponding
        eigenvectors dropped from :math:`P`. This guards against precision
        loss on left eigenvectors computed via the right gramian :math:`Z^T Z`
        in :meth:`BlockMatrix.svd`.

        In either case, one can truncate to a rank :math:`r` model as follows.
        If `p` is an ndarray:

        >>> p_r = p[:r, :]     # doctest: +SKIP
        >>> s_r = model.s[:r]  # doctest: +SKIP
        >>> model_r = LinearMixedModel(p_r @ y, p_r @ x, s_r, y, x)  # doctest: +SKIP

        If `p` is a block matrix:

        >>> p[:r, :].write(p_r_path)          # doctest: +SKIP
        >>> p_r = BlockMatrix.read(p_r_path)  # doctest: +SKIP
        >>> s_r = model.s[:r]                 # doctest: +SKIP
        >>> model_r = LinearMixedModel(p_r @ y, p_r @ x, s_r, y, x, p_r_path)  # doctest: +SKIP

        This method applies no standardization to `z`.

        Warning
        -------
        If `z` is a block matrix, then ideally `z` should be the result of
        directly reading from disk (and possibly a transpose). This is most
        critical if :math:`n > m`, because in this case multiplication by `z`
        will result in all preceding transformations being repeated
        ``n / block_size`` times, as explained in :class:`.BlockMatrix`.

        At least one dimension must be less than or equal to 46300.
        See the warning in :meth:`.BlockMatrix.svd` for performance
        considerations.

        Parameters
        ----------
        y: :class:`ndarray`
            :math:`n` vector of observations :math:`y`.
        x: :class:`ndarray`
            :math:`n \times p` matrix of fixed effects :math:`X`.
        z: :class:`ndarray` or :class:`BlockMatrix`
            :math:`n \times m` matrix of random effects :math:`Z`.
        p_path: :obj:`str`, optional
            Path at which to write :math:`P` as a block matrix.
            Required if `z` is a block matrix.
        overwrite: :obj:`bool`
            If ``True``, overwrite an existing file at `p_path`.
        max_condition_number: :obj:`float`
            Maximum condition number. Must be greater than 1e-16.
        complexity_bound: :obj:`int`
            Complexity bound for :meth:`.BlockMatrix.svd` when `z` is a block
            matrix.

        Returns
        -------
        model: :class:`LinearMixedModel`
            Model constructed from :math:`y`, :math:`X`, and :math:`Z`.
        p: :class:`ndarray` or :class:`.BlockMatrix`
            Matrix :math:`P` whose rows are the eigenvectors of :math:`K`.
            The type is block matrix if `z` is a block matrix and
            :meth:`.BlockMatrix.svd` of `z` returns :math:`U` as a block matrix.
        """
        z_is_bm = isinstance(z, BlockMatrix)

        if z_is_bm and p_path is None:
            raise ValueError("from_random_effects: 'p_path' required when 'z'"
                             "is a block matrix.")

        if max_condition_number < 1e-16:
            raise ValueError(
                "from_random_effects: 'max_condition_number' must "
                f"be at least 1e-16, found {max_condition_number}")

        _check_dims(y, "y", 1)
        _check_dims(x, "x", 2)
        _check_dims(z, "z", 2)

        n, m = z.shape

        if y.shape[0] != n:
            raise ValueError("from_random_effects: 'y' and 'z' must have the "
                             "same number of rows")
        if x.shape[0] != n:
            raise ValueError("from_random_effects: 'x' and 'z' must have the "
                             "same number of rows")

        if z_is_bm:
            u, s0, _ = z.svd(complexity_bound=complexity_bound)
            p = u.T
            p_is_bm = isinstance(p, BlockMatrix)
        else:
            u, s0, _ = hl.linalg._svd(z, full_matrices=False)
            p = u.T
            p_is_bm = False

        s = s0**2

        low_rank = n > m

        if low_rank:
            assert np.all(np.isfinite(s))
            r = int(np.searchsorted(-s, -max_condition_number * s[0]))
            if r < m:
                info(
                    f'from_random_effects: model rank reduced from {m} to {r} '
                    f'due to ill-condition.'
                    f'\n    Largest dropped eigenvalue was {s[r]}.')
            s = s[:r]
            p = p[:r, :]

        if p_path is not None:
            if p_is_bm:
                p.write(p_path, overwrite=overwrite)
                p = BlockMatrix.read(p_path)
            else:
                BlockMatrix.from_numpy(p).write(p_path, overwrite=overwrite)
        if p_is_bm:
            py, px = (p @ y.reshape(n, 1)).to_numpy().flatten(), (
                p @ x).to_numpy()
        else:
            py, px = p @ y, p @ x

        if low_rank:
            model = LinearMixedModel(py, px, s, y, x, p_path)
        else:
            model = LinearMixedModel(py, px, s, p_path=p_path)

        return model, p

    # checks agreement of model initialization
    def _same(self, other, tol=1e-6, up_to_sign=True):
        def same_rows_up_to_sign(a, b, atol):
            assert a.shape[0] == b.shape[0]
            return all(
                np.allclose(a[i], b[i], atol=atol)
                or np.allclose(-a[i], b[i], atol=atol)
                for i in range(a.shape[0]))

        close = same_rows_up_to_sign if up_to_sign else np.allclose

        if self.low_rank != other.low_rank:
            print(f'different low_rank: {self.low_rank}, {other.low_rank}')
            return False

        same = True
        if not close(self.py, other.py, atol=tol):
            print(f'different py:\n{self.py}\n{other.py}')
            same = False
        if not close(self.px, other.px, atol=tol):
            print(f'different px:\n{self.px}\n{other.px}')
            same = False
        if not np.allclose(self.s, other.s, atol=tol):
            print(f'different s:\n{self.s}\n{other.s}')
            same = False
        if self.low_rank and not close(self.y, other.y, atol=tol):
            print(f'different y:\n{self.y}\n{other.y}')
            same = False
        if self.low_rank and not close(self.x, other.x, atol=tol):
            print(f'different x\n{self.x}\n{other.x}')
            same = False
        if self.p_path != other.p_path:
            print(f'different p_path:\n{self.p_path}\n{other.p_path}')
            same = False
        return same
Exemple #18
0
            s_ = fmt(s, i)

        if s_ != s:
            mapping.append((s, s_))
        uniques.add(s_)
        new_ids.append(s_)

    if mapping:
        info(f'Renamed {len(mapping)} duplicate {plural("sample ID", len(mapping))}. Mangled IDs as follows:'
             + ''.join(f'\n  "{pre}" => "{post}"' for pre, post in mapping))
    else:
        info('No duplicate sample IDs found.')
    return dataset.annotate_cols(**{name: hl.literal(new_ids)[hl.int(hl.scan.count())]})


@typecheck(ds=oneof(Table, MatrixTable),
           intervals=expr_array(expr_interval(expr_any)),
           keep=bool)
def filter_intervals(ds, intervals, keep=True) -> Union[Table, MatrixTable]:
    """Filter rows with a list of intervals.

    Examples
    --------

    Filter to loci falling within one interval:

    >>> ds_result = hl.filter_intervals(dataset, [hl.parse_locus_interval('17:38449840-38530994')])

    Remove all loci within list of intervals:

    >>> intervals = [hl.parse_locus_interval(x) for x in ['1:50M-75M', '2:START-400000', '3-22']]
Exemple #19
0
class ReferenceGenome(object):
    """An object that represents a `reference genome <https://en.wikipedia.org/wiki/Reference_genome>`__.

    Examples
    --------

    >>> contigs = ["1", "X", "Y", "MT"]
    >>> lengths = {"1": 249250621, "X": 155270560, "Y": 59373566, "MT": 16569}
    >>> par = [("X", 60001, 2699521)]
    >>> my_ref = hl.ReferenceGenome("my_ref", contigs, lengths, "X", "Y", "MT", par)

    Parameters
    ----------
    name : :obj:`str`
        Name of reference. Must be unique and NOT one of Hail's
        predefined references: ``'GRCh37'``, ``'GRCh38'``, and ``'default'``.
    contigs : :obj:`list` of :obj:`str`
        Contig names.
    lengths : :obj:`dict` of :obj:`str` to :obj:`int`
        Dict of contig names to contig lengths.
    x_contigs : :obj:`str` or :obj:`list` of :obj:`str`
        Contigs to be treated as X chromosomes.
    y_contigs : :obj:`str` or :obj:`list` of :obj:`str`
        Contigs to be treated as Y chromosomes.
    mt_contigs : :obj:`str` or :obj:`list` of :obj:`str`
        Contigs to be treated as mitochondrial DNA.
    par : :obj:`list` of :obj:`tuple` of (str, int, int)
        List of tuples with (contig, start, end)
    """

    _references = {}

    @typecheck_method(name=str,
                      contigs=listof(str),
                      lengths=dictof(str, int),
                      x_contigs=oneof(str, listof(str)),
                      y_contigs=oneof(str, listof(str)),
                      mt_contigs=oneof(str, listof(str)),
                      par=listof(sized_tupleof(str, int, int)))
    def __init__(self,
                 name,
                 contigs,
                 lengths,
                 x_contigs=[],
                 y_contigs=[],
                 mt_contigs=[],
                 par=[]):
        contigs = wrap_to_list(contigs)
        x_contigs = wrap_to_list(x_contigs)
        y_contigs = wrap_to_list(y_contigs)
        mt_contigs = wrap_to_list(mt_contigs)

        par_strings = [
            "{}:{}-{}".format(contig, start, end)
            for (contig, start, end) in par
        ]

        jrep = (Env.hail().variant.ReferenceGenome.apply(
            name, contigs, lengths, x_contigs, y_contigs, mt_contigs,
            par_strings))

        self._init_from_java(jrep)
        self._name = name
        self._contigs = contigs
        self._lengths = lengths
        self._x_contigs = x_contigs
        self._y_contigs = y_contigs
        self._mt_contigs = mt_contigs
        self._par = None
        self._par_tuple = par

        super(ReferenceGenome, self).__init__()
        ReferenceGenome._references[name] = self

    def __str__(self):
        return self._jrep.toString()

    def __repr__(self):
        if not self._par_tuple:
            self._par_tuple = [(x.start.contig, x.start.position,
                                x.end.position) for x in self.par]
        return 'ReferenceGenome(name=%s, contigs=%s, lengths=%s, x_contigs=%s, y_contigs=%s, mt_contigs=%s, par=%s)' % \
               (self.name, self.contigs, self.lengths, self.x_contigs, self.y_contigs, self.mt_contigs, self._par_tuple)

    def __eq__(self, other):
        return isinstance(other, ReferenceGenome) and self._jrep.equals(
            other._jrep)

    def __hash__(self):
        return self._jrep.hashCode()

    @property
    def name(self):
        """Name of reference genome.

        Returns
        -------
        :obj:`str`
        """
        if self._name is None:
            self._name = self._jrep.name()
        return self._name

    @property
    def contigs(self):
        """Contig names.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        if self._contigs is None:
            self._contigs = [str(x) for x in self._jrep.contigs()]
        return self._contigs

    @property
    def lengths(self):
        """Dict of contig name to contig length.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        if self._lengths is None:
            self._lengths = {
                str(x._1()): int(x._2())
                for x in jiterable_to_list(self._jrep.lengths())
            }
        return self._lengths

    @property
    def x_contigs(self):
        """X contigs.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        if self._x_contigs is None:
            self._x_contigs = [
                str(x) for x in jiterable_to_list(self._jrep.xContigs())
            ]
        return self._x_contigs

    @property
    def y_contigs(self):
        """Y contigs.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        if self._y_contigs is None:
            self._y_contigs = [
                str(x) for x in jiterable_to_list(self._jrep.yContigs())
            ]
        return self._y_contigs

    @property
    def mt_contigs(self):
        """Mitochondrial contigs.

        Returns
        -------
        :obj:`list` of :obj:`str`
        """
        if self._mt_contigs is None:
            self._mt_contigs = [
                str(x) for x in jiterable_to_list(self._jrep.mtContigs())
            ]
        return self._mt_contigs

    @property
    def par(self):
        """Pseudoautosomal regions.

        Returns
        -------
        :obj:`list` of :class:`.Interval`
        """

        from hail.utils.interval import Interval
        if self._par is None:
            self._par = [
                Interval._from_java(jrep, hl.tlocus(self))
                for jrep in self._jrep.par()
            ]
        return self._par

    @typecheck_method(contig=str)
    def contig_length(self, contig):
        """Contig length.

        Parameters
        ----------
        contig : :obj:`str`
            Contig name.

        Returns
        -------
        :obj:`int`
            Length of contig.
        """
        if contig in self.lengths:
            return self.lengths[contig]
        else:
            raise KeyError(
                "Contig `{}' is not in reference genome.".format(contig))

    @classmethod
    @typecheck_method(path=str)
    def read(cls, path):
        """Load reference genome from a JSON file.

        Notes
        -----

        The JSON file must have the following format:

        .. code-block:: text

            {"name": "my_reference_genome",
             "contigs": [{"name": "1", "length": 10000000},
                         {"name": "2", "length": 20000000},
                         {"name": "X", "length": 19856300},
                         {"name": "Y", "length": 78140000},
                         {"name": "MT", "length": 532}],
             "xContigs": ["X"],
             "yContigs": ["Y"],
             "mtContigs": ["MT"],
             "par": [{"start": {"contig": "X","position": 60001},"end": {"contig": "X","position": 2699521}},
                     {"start": {"contig": "Y","position": 10001},"end": {"contig": "Y","position": 2649521}}]
            }


        `name` must be unique and not overlap with Hail's pre-instantiated
        references: ``'GRCh37'``, ``'GRCh38'``, and ``'default'``.The contig
        names in `xContigs`, `yContigs`, and `mtContigs` must be present in
        `contigs`. The intervals listed in `par` must have contigs in either
        `xContigs` or `yContigs` and must have positions between 0 and the
        contig length given in `contigs`.

        Parameters
        ----------
        path : :obj:`str`
            Path to JSON file.

        Returns
        -------
        :class:`.ReferenceGenome`
        """
        return ReferenceGenome._from_java(
            Env.hail().variant.ReferenceGenome.fromFile(Env.hc()._jhc, path))

    @typecheck_method(output=str)
    def write(self, output):
        """"Write this reference genome to a file in JSON format.

        Examples
        --------

        >>> my_rg = hl.ReferenceGenome("new_reference", ["x", "y", "z"], {"x": 500, "y": 300, "z": 200})
        >>> my_rg.write("output/new_reference.json")

        Notes
        -----

        Use :class:`~hail.ReferenceGenome.read` to reimport the exported
        reference genome in a new HailContext session.

        Parameters
        ----------
        output : :obj:`str`
            Path of JSON file to write.
        """

        self._jrep.write(Env.hc()._jhc, output)

    @typecheck_method(fasta_file=str, index_file=str)
    def add_sequence(self, fasta_file, index_file):
        """Load the reference sequence from a FASTA file.

        Notes
        -----
        This method can only be run once per reference genome. Use
        :meth:`~has_sequence` to test whether a sequence is loaded.

        FASTA and index files are hosted on google cloud for Hail's built-in
        references:

        **GRCh37**

        - FASTA file: ``gs://hail-common/references/human_g1k_v37.fasta.gz``
        - Index file: ``gs://hail-common/references/human_g1k_v37.fasta.fai``


        **GRCh38**

        - FASTA file: ``gs://hail-common/references/Homo_sapiens_assembly38.fasta.gz``
        - Index file: ``gs://hail-common/references/Homo_sapiens_assembly38.fasta.fai``

        Public download links are available
        `here <https://console.cloud.google.com/storage/browser/hail-common/references/>`__.

        Parameters
        ----------
        fasta_file : :obj:`str`
            Path to FASTA file. Can be compressed (GZIP) or uncompressed.
        index_file : :obj:`str`
            Path to FASTA index file. Must be uncompressed.
        """
        self._jrep.addSequence(Env.hc()._jhc, fasta_file, index_file)

    def has_sequence(self):
        """True if the reference sequence has been loaded.

        Returns
        -------
        :obj:`bool`
        """
        return self._jrep.hasSequence()

    @classmethod
    @typecheck_method(name=str,
                      fasta_file=str,
                      index_file=str,
                      x_contigs=oneof(str, listof(str)),
                      y_contigs=oneof(str, listof(str)),
                      mt_contigs=oneof(str, listof(str)),
                      par=listof(sized_tupleof(str, int, int)))
    def from_fasta_file(cls,
                        name,
                        fasta_file,
                        index_file,
                        x_contigs=[],
                        y_contigs=[],
                        mt_contigs=[],
                        par=[]):
        """Create reference genome from a FASTA file.
        
        Parameters
        ----------
        name: :obj:`str`
            Name for new reference genome.
        fasta_file : :obj:`str`
            Path to FASTA file. Can be compressed (GZIP) or uncompressed.
        index_file : :obj:`str`
            Path to FASTA index file. Must be uncompressed.
        x_contigs : :obj:`str` or :obj:`list` of :obj:`str`
            Contigs to be treated as X chromosomes.
        y_contigs : :obj:`str` or :obj:`list` of :obj:`str`
            Contigs to be treated as Y chromosomes.
        mt_contigs : :obj:`str` or :obj:`list` of :obj:`str`
            Contigs to be treated as mitochondrial DNA.
        par : :obj:`list` of :obj:`tuple` of (str, int, int)
            List of tuples with (contig, start, end)

        Returns
        -------
        :class:`.ReferenceGenome`
        """
        return ReferenceGenome._from_java(
            Env.hail().variant.ReferenceGenome.fromFASTAFile(
                Env.hc()._jhc, name, fasta_file, index_file, x_contigs,
                y_contigs, mt_contigs, par))

    def _init_from_java(self, jrep):
        self._jrep = jrep

    @classmethod
    def _from_java(cls, jrep):
        gr = ReferenceGenome.__new__(cls)
        gr._init_from_java(jrep)
        gr._name = None
        gr._contigs = None
        gr._lengths = None
        gr._x_contigs = None
        gr._y_contigs = None
        gr._mt_contigs = None
        gr._par = None
        gr._par_tuple = None
        super(ReferenceGenome, gr).__init__()
        ReferenceGenome._references[gr.name] = gr
        return gr

    def _check_locus(self, l_jrep):
        self._jrep.checkLocus(l_jrep)

    def _check_interval(self, interval_jrep):
        self._jrep.checkInterval(interval_jrep)
Exemple #20
0
class tstruct(HailType, Mapping):
    """Hail type for structured groups of heterogeneous fields.

    In Python, these are represented as :class:`.Struct`.

    Hail's :class:`.tstruct` type is commonly used to compose types together to form nested
    structures. Structs can contain any combination of types, and are ordered mappings
    from field name to field type. Each field name must be unique.

    Structs are very common in Hail. Each component of a :class:`.Table` and :class:`.MatrixTable`
    is a struct:

    - :meth:`.Table.row`
    - :meth:`.Table.globals`
    - :meth:`.MatrixTable.row`
    - :meth:`.MatrixTable.col`
    - :meth:`.MatrixTable.entry`
    - :meth:`.MatrixTable.globals`

    Structs appear below the top-level component types as well. Consider the following join:

    >>> new_table = table1.annotate(table2_fields = table2.index(table1.key))

    This snippet adds a field to ``table1`` called ``table2_fields``. In the new table,
    ``table2_fields`` will be a struct containing all the non-key fields from ``table2``.

    Parameters
    ----------
    field_types : keyword args of :class:`.HailType`
        Fields.

    See Also
    --------
    :class:`.StructExpression`, :class:`.Struct`
    """

    @typecheck_method(field_types=hail_type)
    def __init__(self, **field_types):
        self._field_types = field_types
        self._fields = tuple(field_types)
        super(tstruct, self).__init__()

    @property
    def types(self):
        """Struct field types.

        Returns
        -------
        :obj:`tuple` of :class:`.HailType`
        """
        return tuple(self._field_types.values())

    @property
    def fields(self):
        """Struct field names.

        Returns
        -------
        :obj:`tuple` of :class:`str`
            Tuple of struct field names.
        """
        return self._fields

    def _traverse(self, obj, f):
        if f(self, obj):
            for k, v in obj.items():
                t = self[k]
                t._traverse(v, f)

    def _typecheck_one_level(self, annotation):
        if annotation:
            if isinstance(annotation, Mapping):
                s = set(self)
                for f in annotation:
                    if f not in s:
                        raise TypeError("type '%s' expected fields '%s', but found fields '%s'" %
                                        (self, list(self), list(annotation)))
            else:
                raise TypeError("type 'struct' expected type Mapping (e.g. dict or hail.utils.Struct), but found '%s'" %
                                type(annotation))

    @typecheck_method(item=oneof(int, str))
    def __getitem__(self, item):
        if not isinstance(item, str):
            item = self._fields[item]
        return self._field_types[item]

    def __iter__(self):
        return iter(self._field_types)

    def __len__(self):
        return len(self._fields)

    def __str__(self):
        return "struct{{{}}}".format(
            ', '.join('{}: {}'.format(escape_parsable(f), str(t)) for f, t in self.items()))

    def _eq(self, other):
        return (isinstance(other, tstruct)
                and self._fields == other._fields
                and all(self[f] == other[f] for f in self._fields))

    def _pretty(self, b, indent, increment):
        if not self._fields:
            b.append('struct {}')
            return

        pre_indent = indent
        indent += increment
        b.append('struct {')
        for i, (f, t) in enumerate(self.items()):
            if i > 0:
                b.append(', ')
            b.append('\n')
            b.append(' ' * indent)
            b.append('{}: '.format(escape_parsable(f)))
            t._pretty(b, indent, increment)
        b.append('\n')
        b.append(' ' * pre_indent)
        b.append('}')

    def _parsable_string(self):
        return "Struct{{{}}}".format(
            ','.join('{}:{}'.format(escape_parsable(f), t._parsable_string()) for f, t in self.items()))

    def _convert_from_json(self, x):
        from hail.utils import Struct
        return Struct(**{f: t._convert_from_json_na(x.get(f)) for f, t in self.items()})

    def _convert_to_json(self, x):
        return {f: t._convert_to_json_na(x[f]) for f, t in self.items()}

    def _is_prefix_of(self, other):
        return (isinstance(other, tstruct)
                and len(self._fields) <= len(other._fields)
                and all(x == y for x, y in zip(self._field_types.values(), other._field_types.values())))

    def _concat(self, other):
        new_field_types = {}
        new_field_types.update(self._field_types)
        new_field_types.update(other._field_types)
        return tstruct(**new_field_types)

    def _insert(self, path, t):
        if not path:
            return t

        key = path[0]
        keyt = self.get(key)
        if not (keyt and isinstance(keyt, tstruct)):
            keyt = tstruct()
        return self._insert_fields(**{key: keyt._insert(path[1:], t)})

    def _insert_field(self, field, typ):
        return self._insert_fields(**{field: typ})

    def _insert_fields(self, **new_fields):
        new_field_types = {}
        new_field_types.update(self._field_types)
        new_field_types.update(new_fields)
        return tstruct(**new_field_types)

    def _drop_fields(self, fields):
        return tstruct(**{f: t for f, t in self.items() if f not in fields})

    def _select_fields(self, fields):
        return tstruct(**{f: self[f] for f in fields})

    def _index_path(self, path):
        t = self
        for p in path:
            t = t[p]
        return t

    def _rename(self, map):
        seen = {}
        new_field_types = {}

        for f0, t in self.items():
            f = map.get(f0, f0)
            if f in seen:
                raise ValueError(
                    "Cannot rename two fields to the same name: attempted to rename {} and {} both to {}".format(
                        repr(seen[f]), repr(f0), repr(f)))
            else:
                seen[f] = f0
                new_field_types[f] = t

        return tstruct(**new_field_types)

    def unify(self, t):
        if not (isinstance(t, tstruct) and len(self) == len(t)):
            return False
        for (f1, t1), (f2, t2) in zip(self.items(), t.items()):
            if not (f1 == f2 and t1.unify(t2)):
                return False
        return True

    def subst(self):
        return tstruct(**{f: t.subst() for f, t in self.items()})

    def clear(self):
        for f, t in self.items():
            t.clear()

    def _get_context(self):
        return HailTypeContext.union(*self.values())
Exemple #21
0
    ht = ht.drop(*fields)
    ht = ht.explode(ht['_col_val'])
    ht = ht.annotate(**{key: ht['_col_val'][0],
                        value: ht['_col_val'][1]})
    ht = ht.drop('_col_val')

    ht_tmp = new_temp_file()
    ht.write(ht_tmp)

    return hl.read_table(ht_tmp)


@typecheck(ht=Table,
           field=str,
           value=str,
           key=nullable(oneof(str,
                              sequenceof(str))))
def spread(ht, field, value, key=None) -> Table:
    """Spread a key-value pair of fields across multiple fields.

    :func:`.spread` mimics the functionality of the `spread()` function in R's
    `tidyr` package. This is a way to turn "long" format data into "wide"
    format data.

    Given a ``field``, :func:`.spread` will create a new table by grouping
    ``ht`` by its row key and, optionally, any additional fields passed to the
    ``key`` argument.

    After collapsing ``ht`` by these keys, :func:`.spread` creates a new row field
    for each unique value of ``field``, where the row field values are given by the
    corresponding ``value`` in the original ``ht``.
Exemple #22
0
    >>> hl.eval(hl.nd.array(hl.range(10, 20)))
    array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], dtype=int32)

    Parameters
    ----------
    input_array : :class:`.ArrayExpression` or numpy ndarray or nested python lists

    Returns
    -------
    :class:`.NDArrayExpression`
        An ndarray based on the input array.
    """
    return _ndarray(input_array)


shape_type = oneof(expr_int64, tupleof(expr_int64), expr_tuple())


@typecheck(a=expr_array(), shape=shape_type)
def from_column_major(a, shape):
    assert len(shape) == 2
    return array(a).reshape(tuple(reversed(shape))).T


@typecheck(start=expr_int32, stop=nullable(expr_int32), step=expr_int32)
def arange(start, stop=None, step=1) -> NDArrayNumericExpression:
    """Returns a 1-dimensions ndarray of integers from `start` to `stop` by `step`.

    Examples
    --------
Exemple #23
0
        raise NotImplementedError

    @abc.abstractmethod
    def clear(self):
        raise NotImplementedError

    def _get_context(self):
        return _empty_context

    def get_context(self):
        if self._context is None:
            self._context = self._get_context()
        return self._context


hail_type = oneof(HailType, transformed((str, dtype)))


class _tvoid(HailType):
    def __init__(self):
        super(_tvoid, self).__init__()

    def __str__(self):
        return "void"

    def _eq(self, other):
        return isinstance(other, _tvoid)

    def _parsable_string(self):
        return "Void"
Exemple #24
0
        L = k + 2
    else:
        L = iteration_size
    assert ((q + 1) * L >= k)
    n = A.ncols

    # Generate random matrix G
    G = hl.nd.zeros((n, L)).map(lambda n: hl.rand_norm(0, 1))
    G = hl.nd.qr(G)[0]._persist()

    fact = _krylov_factorization(A, G, q, compute_U)
    info("_reduced_svd: Computing local SVD")
    return fact.reduced_svd(k)


@typecheck(A=oneof(expr_float64, TallSkinnyMatrix),
           num_moments=int,
           p=nullable(int),
           moment_samples=int,
           block_size=int)
def _spectral_moments(A,
                      num_moments,
                      p=None,
                      moment_samples=500,
                      block_size=128):
    if not isinstance(A, TallSkinnyMatrix):
        check_entry_indexed('_spectral_moments/entry_expr', A)
        A = _make_tsm_from_call(A, block_size)

    n = A.ncols
Exemple #25
0
class tunion(HailType, Mapping):
    @typecheck_method(case_types=hail_type)
    def __init__(self, **case_types):
        """Tagged union type.  Values of type union represent one of several
        heterogenous, named cases.

        Parameters
        ----------
        cases : keyword args of :class:`.HailType`
            The union cases.

        """

        super(tunion, self).__init__()
        self._case_types = case_types
        self._cases = tuple(case_types)

    @property
    def cases(self):
        """Return union case names.

        Returns
        -------
        :obj:`tuple` of :obj:`str`
            Tuple of union case names
        """
        return self._cases

    @typecheck_method(item=oneof(int, str))
    def __getitem__(self, item):
        if isinstance(item, int):
            item = self._cases[item]
        return self._case_types[item]

    def __iter__(self):
        return iter(self._case_types)

    def __len__(self):
        return len(self._cases)

    def __str__(self):
        return "union{{{}}}".format(', '.join(
            '{}: {}'.format(escape_parsable(f), str(t))
            for f, t in self.items()))

    def _eq(self, other):
        return (isinstance(other, tunion) and self._cases == other._cases
                and all(self[c] == other[c] for c in self._cases))

    def _pretty(self, l, indent, increment):
        if not self._cases:
            l.append('union {}')
            return

        pre_indent = indent
        indent += increment
        l.append('union {')
        for i, (f, t) in enumerate(self.items()):
            if i > 0:
                l.append(', ')
            l.append('\n')
            l.append(' ' * indent)
            l.append('{}: '.format(escape_parsable(f)))
            t._pretty(l, indent, increment)
        l.append('\n')
        l.append(' ' * pre_indent)
        l.append('}')

    def _parsable_string(self):
        return "Union{{{}}}".format(','.join(
            '{}:{}'.format(escape_parsable(f), t._parsable_string())
            for f, t in self.items()))

    def unify(self, t):
        if not (isinstance(t, tunion) and len(self) == len(t)):
            return False
        for (f1, t1), (f2, t2) in zip(self.items(), t.items()):
            if not (f1 == f2 and t1.unify(t2)):
                return False
        return True

    def subst(self):
        return tunion(**{f: t.subst() for f, t in self.items()})

    def clear(self):
        for f, t in self.items():
            t.clear()

    def _get_context(self):
        return HailTypeContext.union(*self.values())
Exemple #26
0
        pct = on_diag / total_obs * 100 if total_obs > 0 else float('nan')
        info(f"concordance: total concordance {pct:.2f}%")

    per_variant = joined.annotate_rows(concordance=aggr)
    per_variant = per_variant.select_rows(
        concordance=concordance_array(per_variant.concordance),
        n_discordant=n_discordant(per_variant.concordance))
    per_sample = joined.annotate_cols(concordance=aggr)
    per_sample = per_sample.select_cols(
        concordance=concordance_array(per_sample.concordance),
        n_discordant=n_discordant(per_sample.concordance))

    return glob, per_sample.cols(), per_variant.rows()


@typecheck(dataset=oneof(Table, MatrixTable),
           config=str,
           block_size=int,
           name=str,
           csq=bool)
def vep(dataset: Union[Table, MatrixTable],
        config,
        block_size=1000,
        name='vep',
        csq=False):
    """Annotate variants with VEP.

    .. include:: ../_templates/req_tvariant.rst

    :func:`.vep` runs `Variant Effect Predictor
    <http://www.ensembl.org/info/docs/tools/vep/index.html>`__ on the
Exemple #27
0
@author: nbaya
"""

import hail as hl
from hail.typecheck import typecheck, oneof, nullable
from hail.expr.expressions import expr_float64, expr_int32, expr_array, expr_call
from hail.matrixtable import MatrixTable
from hail.table import Table
from hail.utils.java import Env
import numpy as np
import pandas as pd
import scipy.stats as stats


@typecheck(mt=MatrixTable,
           genotype=oneof(expr_int32, expr_float64, expr_call),
           h2=(oneof(float, int, list, np.ndarray)),
           pi=nullable(oneof(float, int, list, np.ndarray)),
           rg=nullable(oneof(float, int, list, np.ndarray)),
           annot=nullable(oneof(expr_float64, expr_int32)),
           popstrat=nullable(oneof(expr_int32, expr_float64)),
           popstrat_var=nullable(oneof(float, int)),
           exact_h2=bool)
def simulate_phenotypes(mt,
                        genotype,
                        h2,
                        pi=None,
                        rg=None,
                        annot=None,
                        popstrat=None,
                        popstrat_var=None,
Exemple #28
0
                .or_error("'filter_samples': unexpected local allele: old index=" + hl.str(old_idx))

        vd = vd.annotate_entries(LA=vd.LA.map(lambda la: new_la_index(la)))
        vd = vd.key_rows_by('locus')
        vd = vd.annotate_rows(
            alleles=vd.__kept_indices.keys().map(lambda i: vd.alleles[i]))
        vd = vd._key_rows_by_assert_sorted('locus', 'alleles')
        vd = vd.drop('__allele_counts', '__kept_indices', '__old_to_new_LA')
        return VariantDataset(reference_data, vd)

    variant_data = variant_data.filter_rows(hl.agg.count() > 0)
    return VariantDataset(reference_data, variant_data)


@typecheck(vds=VariantDataset,
           calling_intervals=oneof(Table,
                                   expr_array(expr_interval(expr_locus()))),
           normalization_contig=str)
def impute_sex_chromosome_ploidy(vds: VariantDataset, calling_intervals,
                                 normalization_contig: str) -> hl.Table:
    """Impute sex chromosome ploidy from depth of reference data within calling intervals.

    Returns a :class:`.Table` with sample ID keys, with the following fields:

     -  ``autosomal_mean_dp`` (*float64*): Mean depth on calling intervals on normalization contig.
     -  ``x_mean_dp`` (*float64*): Mean depth on calling intervals on X chromosome.
     -  ``x_ploidy`` (*float64*): Estimated ploidy on X chromosome. Equal to ``2 * x_mean_dp / autosomal_mean_dp``.
     -  ``y_mean_dp`` (*float64*): Mean depth on calling intervals on  chromosome.
     -  ``y_ploidy`` (*float64*): Estimated ploidy on Y chromosome. Equal to ``2 * y_mean_db / autosomal_mean_dp``.

    Parameters
    ----------