Exemple #1
0
def do_auto_correlation(model_name, phase, r, mode='smu-post-recon-std'):

    sim_name = '{}_{:02}-{}'.format(sim_name_prefix, cosmology, phase)
    filedir = os.path.join(save_dir, sim_name, 'z{}-r{}'.format(redshift, r))
    if 'smu' in mode:
        DDnpy = np.load(os.path.join(filedir,
                                     '{}-auto-paircount-DD-{}.npy'
                                     .format(model_name, mode)))
        DD, _ = rebin_smu_counts(DDnpy, 'DD')
        np.savetxt(os.path.join(filedir, '{}-auto-paircount-DD-{}-rebinned.txt'
                                .format(model_name, mode)),
                   DD, fmt=txtfmt)
        # # create r vector from weighted average of DD pair counts
        # savg_vec = s_bins_centre
        # savg_vec = np.sum(savg * DD, axis=1) / np.sum(DD, axis=1)
        DR_ar, _, RR_ar = analytic_random(1, 1, 1, 1, s_bins, mu_bins, L**3)
        assert DD.shape == DR_ar.shape == RR_ar.shape
        np.savetxt(os.path.join(filedir,
                                '{}-auto-paircount-DR-{}-ar.txt'
                                .format(model_name, mode)),
                   DR_ar, fmt=txtfmt)
        np.savetxt(os.path.join(filedir,
                                '{}-auto-paircount-RR-{}-ar.txt'
                                .format(model_name, mode)),
                   RR_ar, fmt=txtfmt)
        xi_s_mu = ls_estimator(DD, DR_ar, DR_ar, RR_ar, RR_ar)
        xi_0 = tpcf_multipole(xi_s_mu, mu_bins, order=0)
        xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=2)
        xi_0_txt = np.vstack([s_bins_centre, xi_0]).T
        xi_2_txt = np.vstack([s_bins_centre, xi_2]).T
        for output, tag in zip([xi_s_mu, xi_0_txt, xi_2_txt],
                               ['xi', 'xi_0', 'xi_2']):
            np.savetxt(os.path.join(filedir, '{}-auto-{}-{}-ar.txt'
                                    .format(model_name, tag, mode)),
                       output, fmt=txtfmt)
Exemple #2
0
    def multipoles(self, s: np.array, mu: np.array):

        if self.list_analytical_moments:
            self.s_mu = real2redshift.simps_integrate(
                s, mu, self.sim_measurement_best_fit.tpcf.mean,
                self.jointpdf_los)
        else:
            self.s_mu = real2redshift.simps_integrate(
                s, mu, self.sim_measurement.tpcf.mean, self.jointpdf_los)

        monopole = tpcf_multipole(self.s_mu, mu, order=0)
        quadrupole = tpcf_multipole(self.s_mu, mu, order=2)
        hexadecapole = tpcf_multipole(self.s_mu, mu, order=4)
        #self.wedges = tpcf_wedges(self.s_mu, mu)

        return monopole, quadrupole, hexadecapole
Exemple #3
0
def compute_xi2(x,
                y,
                z,
                L,
                s_min,
                s_max,
                n_sbins,
                fn_save,
                nmubins=15,
                nthreads=1):
    print("Computing xi_2")
    # Set up bins (log)
    sbins = np.logspace(np.log10(smin), np.log10(smax),
                        nsbins + 1)  # note the + 1 to nbins
    s_avg = 10**(0.5 * (np.log10(sbins)[1:] + np.log10(sbins)[:-1]))

    # Use halotools to compute the quadrupole, as in this example:
    # https://halotools.readthedocs.io/en/latest/api/halotools.mock_observables.tpcf_multipole.html
    sample = np.vstack((x, y, z)).T
    mu_bins = np.linspace(0, 1, nmubins)
    xi_s_mu = s_mu_tpcf(sample, sbins, mu_bins, period=L)
    xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=1)  # Order 1 is quadrupole

    print("Saving")
    os.makedirs(os.path.dirname(savename), exist_ok=True)
    results = np.array([s_avg, xi_2])
    np.savetxt(savename, results.T, delimiter=',', fmt=['%f', '%e'])
def multipoles(mu, s_mu):
    '''

	Computes monopole, quadrupole and hexadecapole of the redshift space correlation function

	Args:
		s : array of s distances in Mpc/h
		mu : array of mu angular bins (between 0 and 1)

	Returns:

		monopole: monopole evaluated at the given s bins
		quadrupole: quadrupole evaluated at the given s bins
		hexadecapole: hexadecapole evaluated at the given s bins

	'''

    monopole = tpcf_multipole(s_mu, mu, order=0)
    quadrupole = tpcf_multipole(s_mu, mu, order=2)
    hexadecapole = tpcf_multipole(s_mu, mu, order=4)

    return monopole, quadrupole, hexadecapole
Exemple #5
0
def xi_rsd(x, y, z, L, smin, smax, nsbins, savename, nthreads=1, order=1):
    print("Computing xi_2")
    #LOG
    sbins = np.logspace(np.log10(smin), np.log10(smax),
                        nsbins + 1)  # note the + 1 to nbins
    s_avg = 10**(0.5 * (np.log10(sbins)[1:] + np.log10(sbins)[:-1]))
    #LINEAR
    #sbins = np.linspace(smin, smax, sbins + 1) # note the + 1 to nbins
    #s_avg = 0.5*(sbins[1:] + sbins[:-1])

    sample = np.vstack((x, y, z)).T
    nmubins = 15
    mu_bins = np.linspace(0, 1, nmubins)
    xi_s_mu = s_mu_tpcf(sample, sbins, mu_bins, period=L)
    xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=order)

    print("Saving")
    os.makedirs(os.path.dirname(savename), exist_ok=True)

    print(xi_2)
    results = np.array([s_avg, xi_2])
    np.savetxt(savename, results.T, delimiter=',', fmt=['%f', '%e'])
import numpy as np
from halotools.mock_observables import tpcf, s_mu_tpcf, tpcf_multipole
import matplotlib.pyplot as plt

h = 0.6726
b = 2.23
pos = np.fromfile('sample_input_gal_mx3_float32_0-1100_mpc.dat',
                  dtype=np.float32).reshape(-1, 4)[:, 1:4]*h
s_bins, mu_bins = np.arange(5, 155, 5), np.arange(0, 1.05, 0.05)
r = (s_bins[:-1] + s_bins[1:])/2
xi = tpcf(pos, s_bins, period=1100)
xi_s_mu = s_mu_tpcf(pos, s_bins, mu_bins, period=1100)
xi_0 = tpcf_multipole(xi_s_mu, mu_bins, order=0)
xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=2)
fig, ax = plt.subplots()
ax.plot(r, xi*np.square(r), 'o:', label='xi')
ax.plot(r, xi_0*np.square(r), '+:', label='xi_0')
ax.plot(r, xi_2*np.square(r), 'x-.', label='xi_2')
fig.legend()
fig.savefig('correlation.pdf')
Exemple #7
0
    dd_all = np.zeros((len(s_bins) - 1) * (len(mu_bins) - 1))
    for xyz in ['xyz', 'yzx', 'zxy']:

        pos = return_xyz_formatted_array(
            x=mock[xyz[0]], y=mock[xyz[1]], z=mock[xyz[2]],
            velocity=mock['v'+xyz[2]], velocity_distortion_dimension='z',
            period=boxsize, redshift=redshift, cosmology=cosmology)[select]
        pos = pos.astype(float)
        dd_all += DDsmu(1, n_threads, s_bins, 1, len(mu_bins) - 1, pos[:, 0],
                        pos[:, 1], pos[:, 2], periodic=True, boxsize=boxsize)[
                            'npairs'] / 3.0

    xi = xi_from_dd(dd_all, len(pos), boxsize, s_bins, mu_bins)
    n_jk = 10
    for order in [0, 2, 4]:
        table['xi{}'.format(order)] = tpcf_multipole(xi, mu_bins, order=order)
        table['xi{}_jk'.format(order)] = np.zeros((len(table), n_jk**3))
    for i_x, i_y, i_z in tqdm.tqdm(itertools.product(
            range(n_jk), range(n_jk), range(n_jk)), total=n_jk**3):
        select = ~((pos[:, 0] < boxsize / n_jk * i_x) |
                   (pos[:, 0] >= boxsize / n_jk * (i_x + 1)) |
                   (pos[:, 1] < boxsize / n_jk * i_y) |
                   (pos[:, 1] >= boxsize / n_jk * (i_y + 1)) |
                   (pos[:, 2] < boxsize / n_jk * i_z) |
                   (pos[:, 2] >= boxsize / n_jk * (i_z + 1)))

        dd_auto = DDsmu(1, 4, s_bins, 1, len(mu_bins) - 1, pos[:, 0][select],
                        pos[:, 1][select], pos[:, 2][select], periodic=True,
                        boxsize=boxsize)['npairs']
        dd_cross = DDsmu(0, 4, s_bins, 1, len(mu_bins) - 1,
                         pos[:, 0][~select], pos[:, 1][~select],
def do_subcross_correlation(model, n_sub=3):  # n defines number of subvolums
    '''
    cross-correlation between 1/n_sub^3 of a box to the whole box
    n_sub^3 * 16 results are used for emperically estimating covariance matrix
    '''
    # setting halocat properties to be compatibble with halotools
    sim_name = model.mock.header['SimName']
    Lbox = model.mock.Lbox
    redshift = model.mock.redshift
    model_name = model.model_name
    gt = model.mock.galaxy_table
    ND1 = len(gt)
    s_bins = np.arange(0, 150 + step_s_bins, step_s_bins)
    s_bins_centre = (s_bins[:-1] + s_bins[1:]) / 2
    mu_bins = np.arange(0, 1 + step_mu_bins, step_mu_bins)
    filedir = os.path.join(save_dir, sim_name,
                           'z{}-r{}'.format(redshift, model.r))

    for i, j, k in itertools.product(range(n_sub), repeat=3):
        linind = i * n_sub**2 + j * n_sub + k  # linearised index

        # read in pair counts file which has fine bins
        D1D2 = np.load(
            os.path.join(
                filedir,
                '{}-cross_{}-paircount-D1D2.npy'.format(model_name, linind)))
        # print('Re-binning {} of {} cross-correlation into ({}, {})...'
        #       .format(linind+1, n_sub**3, s_bins.size-1, mu_bins.size-1))
        # set up bins using specifications, re-bin the counts
        npairs_D1D2 = rebin(D1D2)
        # save re-binned pair ounts
        np.savetxt(os.path.join(
            filedir, '{}-cross_{}-paircount-D1D2-rebinned.txt'.format(
                model_name, linind)),
                   npairs_D1D2,
                   fmt=txtfmt)

        # read R1D2 counts and re-bin
        if use_analytic_randoms:
            npairs_R1D2 = np.loadtxt(
                os.path.join(
                    filedir, '{}-cross_{}-paircount-R1D2.txt'.format(
                        model_name, linind)))
        if not use_analytic_randoms or debug_mode:
            R1D2 = np.load(
                os.path.join(
                    filedir, '{}-cross_{}-paircount-R1D2.npy'.format(
                        model_name, linind)))
            npairs_R1D2 = rebin(R1D2)
            # save re-binned pair ounts
            np.savetxt(os.path.join(
                filedir, '{}-cross_{}-paircount-R1D2-rebinned.txt'.format(
                    model_name, linind)),
                       npairs_R1D2,
                       fmt=txtfmt)

        # calculate cross-correlation from counts using dp estimator
        nD1 = ND1 / Lbox.prod()
        nR1 = nD1
        xi_s_mu = dp_estimator(nD1, nR1, npairs_D1D2, npairs_R1D2)

        # print('Calculating cross-correlation for subvolume {} of {}...'
        #       .format(linind+1, np.power(n_sub, 3)))
        xi_0 = tpcf_multipole(xi_s_mu, mu_bins, order=0)
        xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=2)
        xi_0_txt = np.vstack([s_bins_centre, xi_0]).transpose()
        xi_2_txt = np.vstack([s_bins_centre, xi_2]).transpose()
        # save to text
        np.savetxt(os.path.join(
            filedir, '{}-cross_{}-xi_s_mu.txt'.format(model_name, linind)),
                   xi_s_mu,
                   fmt=txtfmt)
        np.savetxt(os.path.join(
            filedir, '{}-cross_{}-xi_0.txt'.format(model_name, linind)),
                   xi_0_txt,
                   fmt=txtfmt)
        np.savetxt(os.path.join(
            filedir, '{}-cross_{}-xi_2.txt'.format(model_name, linind)),
                   xi_2_txt,
                   fmt=txtfmt)
def do_auto_correlation(model):
    '''
    read in counts, and generate xi_s_mu using bins specified
    using the PH (natural) estimator for periodic sim boxes instead of LS
    '''

    # setting halocat properties to be compatibble with halotools
    sim_name = model.mock.header['SimName']
    redshift = model.mock.redshift
    model_name = model.model_name
    s_bins = np.arange(0, 150 + step_s_bins, step_s_bins)
    s_bins_centre = (s_bins[:-1] + s_bins[1:]) / 2
    mu_bins = np.arange(0, 1 + step_mu_bins, step_mu_bins)
    filedir = os.path.join(save_dir, sim_name,
                           'z{}-r{}'.format(redshift, model.r))

    # read in pair counts file which has fine bins
    filepath1 = os.path.join(filedir,
                             '{}-auto-paircount-DD.npy'.format(model_name))

    DD = np.load(filepath1)
    ND = len(model.mock.galaxy_table)
    NR = ND
    # re-count pairs in new bins, re-bin the counts
    # print('Re-binning auto DD counts into ({}, {})...'
    #       .format(s_bins.size-1, mu_bins.size-1))
    npairs_DD = rebin(DD)
    # save re-binned pair ounts
    np.savetxt(os.path.join(
        filedir, '{}-auto-paircount-DD-rebinned.txt'.format(model_name)),
               npairs_DD,
               fmt=txtfmt)
    if use_analytic_randoms:
        filepath2 = os.path.join(filedir,
                                 '{}-auto-paircount-RR.txt'.format(model_name))
        npairs_RR = np.loadtxt(filepath2)
    if not use_analytic_randoms or debug_mode:
        # rebin RR.npy counts
        RR = np.load(
            os.path.join(filedir,
                         '{}-auto-paircount-RR.npy'.format(model_name)))

        npairs_RR = rebin(RR)
        # save re-binned pair ounts
        np.savetxt(os.path.join(
            filedir, '{}-auto-paircount-RR-rebinned.txt'.format(model_name)),
                   npairs_RR,
                   fmt=txtfmt)

    xi_s_mu = ph_estimator(ND, NR, npairs_DD, npairs_RR)
    # print('Calculating first two orders of auto-correlation multipoles...')
    xi_0 = tpcf_multipole(xi_s_mu, mu_bins, order=0)
    xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=2)
    xi_0_txt = np.vstack([s_bins_centre, xi_0]).transpose()
    xi_2_txt = np.vstack([s_bins_centre, xi_2]).transpose()
    # save to text
    # print('Saving auto-correlation texts to: {}'.format(filedir))
    np.savetxt(os.path.join(filedir, '{}-auto-xi_s_mu.txt'.format(model_name)),
               xi_s_mu,
               fmt=txtfmt)
    np.savetxt(os.path.join(filedir, '{}-auto-xi_0.txt'.format(model_name)),
               xi_0_txt,
               fmt=txtfmt)
    np.savetxt(os.path.join(filedir, '{}-auto-xi_2.txt'.format(model_name)),
               xi_2_txt,
               fmt=txtfmt)

    return xi_s_mu, xi_0_txt, xi_2_txt
def save_tpcfs(r,
               s,
               mu,
               pos,
               vel,
               los_direction,
               cosmology,
               boxsize,
               saveto,
               n_wedges=3):

    print('Computing real space correlation function...')
    tpcf_real = tpcf_tools.compute_real_tpcf(r, pos, vel, boxsize)
    print('Done!')

    print('Computing redshift space correlation function...')
    tpcf_s_mu = tpcf_tools.compute_tpcf_s_mu(s, mu, pos, vel, los_direction,
                                             cosmology, boxsize)
    print('Done!')

    print('Computing multipoles...')
    monopole = tpcf_multipole(tpcf_s_mu, mu, order=0)

    quadrupole = tpcf_multipole(tpcf_s_mu, mu, order=2)

    hexadecapole = tpcf_multipole(tpcf_s_mu, mu, order=4)
    print('Done!')

    # wedges for mu

    n_mu_bins_per_wedge = 50

    mu_wedges = np.concatenate([
        np.linspace(i * (1. / n_wedges),
                    (i + 1) * 1. / n_wedges - 0.001, n_mu_bins_per_wedge)
        for i in range(n_wedges)
    ], )

    mu_wedges[-1] = 1.

    print('Computing wedges...')
    tpcf_s_mu_wedges = tpcf_tools.compute_tpcf_s_mu(s, mu_wedges, pos, vel,
                                                    los_direction, cosmology,
                                                    boxsize)

    wedges = tpcf_tools.tpcf_wedges(tpcf_s_mu_wedges,
                                    mu_wedges,
                                    n_wedges=n_wedges)
    print('Done!')

    tpcf_dict = {
        'real': {
            'tpcf': tpcf_real,
            'r': r,
        },
        'redsfhit': {
            's': s,
            'mu': mu,
            'tpcf_s_mu': tpcf_s_mu,
            'monopole': monopole,
            'quadrupole': quadrupole,
            'hexadecapole': hexadecapole,
            'wedges': wedges
        }
    }

    with open(saveto + '.pickle', 'wb') as fp:
        pickle.dump(tpcf_dict, fp, protocol=pickle.HIGHEST_PROTOCOL)
Exemple #11
0
def do_subcross_correlation(linind, phase, r, model_name,
                            mode='smu-post-recon-std',
                            use_shifted_randoms=True):

    sim_name = '{}_{:02}-{}'.format(sim_name_prefix, cosmology, phase)
    filedir = os.path.join(save_dir, sim_name, 'z{}-r{}'.format(redshift, r))
    print('r = {}, x-correlation subvolume {}...'.format(r, linind))
    DDnpy = np.load(os.path.join(filedir, '{}-cross_{}-paircount-DD-{}.npy'
                                 .format(model_name, linind, mode)))
    DD, _ = rebin_smu_counts(DDnpy, 'DD')  # re-bin and re-weight
    np.savetxt(os.path.join(filedir,
                            '{}-cross_{}-paircount-DD-{}-rebinned.txt'
                            .format(model_name, linind, mode)),
               DD, fmt=txtfmt)
    if use_shifted_randoms:
        DRnpy = np.load(os.path.join(filedir,
                                     '{}-cross_{}-paircount-DR-{}-sr.npy'
                                     .format(model_name, linind, mode)))
        RDnpy = np.load(os.path.join(filedir,
                                     '{}-cross_{}-paircount-RD-{}-sr.npy'
                                     .format(model_name, linind, mode)))
        DR, _ = rebin_smu_counts(DRnpy, 'DR')
        RD, _ = rebin_smu_counts(RDnpy, 'RD')
        for txt, tag in zip([DR, RD], ['DR', 'RD']):
            np.savetxt(os.path.join(
                    filedir, '{}-cross_{}-paircount-{}-{}-sr_rebinned.txt'
                    .format(model_name, linind, tag, mode)),
                txt, fmt=txtfmt)
        RR_list = []
        for n in range(random_multiplier):
            RRnpy = np.load(os.path.join(
                filedir, '{}-cross_{}_{}-paircount-RR-{}-sr.npy'
                .format(model_name, linind, n, mode)))
            RR, _ = rebin_smu_counts(RRnpy, 'RR')
            RR_list.append(RR)
        RR = np.mean(RR_list, axis=0)  # shifted, could be co-adding zeros
        np.savetxt(os.path.join(
                filedir, '{}-cross_{}-paircount-RR-{}-sr_rebinned.txt'
                .format(model_name, linind, mode)),
            RR, fmt=txtfmt)
        # use analytic RR as denominator in LS estimator
        _, _, RR_ar = analytic_random(1, 1, 1, 1, s_bins, mu_bins, L**3)
        np.savetxt(os.path.join(
                filedir,
                '{}-cross_{}-paircount-RR-{}-ar.txt'
                .format(model_name, linind, mode)),
            RR_ar, fmt=txtfmt)
        assert DD.shape == DR.shape == RD.shape == RR.shape == RR_ar.shape
        xi_s_mu = ls_estimator(DD, DR, RD, RR, RR_ar)
        xi_0 = tpcf_multipole(xi_s_mu, mu_bins, order=0)
        xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=2)
        xi_0_txt = np.vstack([s_bins_centre, xi_0]).T
        xi_2_txt = np.vstack([s_bins_centre, xi_2]).T
        for output, tag in zip([xi_s_mu, xi_0_txt, xi_2_txt],
                               ['xi', 'xi_0', 'xi_2']):
            np.savetxt(os.path.join(
                    filedir, '{}-cross_{}-{}-{}-sr.txt'
                    .format(model_name, linind, tag, mode)),
                output, fmt=txtfmt)
    elif 'post' not in mode:  # pre-recon covariance, use analytic randoms
        DR, RD, RR = analytic_random(1, 1, 1, 1, s_bins, mu_bins, L**3)
        for output, tag in zip([DR, RD, RR], ['DR', 'RD', 'RR']):
            np.savetxt(os.path.join(
                    filedir, '{}-cross_{}-paircount-{}-{}-ar.txt'
                    .format(model_name, linind, tag, mode)),
                output, fmt=txtfmt)
        # calculate cross-correlation from counts using ls estimator
        xi_s_mu = ls_estimator(DD, DR, RD, RR, RR)
        xi_0 = tpcf_multipole(xi_s_mu, mu_bins, order=0)
        xi_2 = tpcf_multipole(xi_s_mu, mu_bins, order=2)
        xi_0_txt = np.vstack([s_bins_centre, xi_0]).T
        xi_2_txt = np.vstack([s_bins_centre, xi_2]).T
        for output, tag in zip([xi_s_mu, xi_0_txt, xi_2_txt],
                               ['xi', 'xi_0', 'xi_2']):
            np.savetxt(os.path.join(
                    filedir, '{}-cross_{}-{}-{}-ar.txt'
                    .format(model_name, linind, tag, mode)),
                output, fmt=txtfmt)