Exemple #1
0
def solution():
    count = 1
    min = 100000
    for i in range(0, 100):
        for j in range(i + 1, 100):
            hd = hamming(df.iloc[i, 1], df.iloc[j, 1])
            print(count, "(", df.iloc[i, 0], df.iloc[j, 0],
                  ")hamming_distance: ", hd)
            if min > hd:
                min = hd
            count += 1
    return min
Exemple #2
0
def sol():
    df = pd.read_csv('sample.csv', names=['word', 'bin'])

    min = 1000000000
    count = 1
    for i in range(0, len(df)):
        for j in range(i + 1, len(df)):
            hd = hamming(df.iloc[i, 1], df.iloc[j, 1])
            if min > hd:
                min = hd
            count += 1
    return min
def main():
    df = pd.read_csv('sample.csv', names=['word', bin])
    print()
    min = -1
    count = 1
    length = df.shape[0]
    #length = 10
    #print(df.size)
    for i in range(length - 1):
        for j in range(i + 1, length):
            #print(i,j)
            hd = hamming(df.iloc[i, 1], df.iloc[j, 1])
            print(count, "(", df.iloc[i, 0], df.iloc[j, 0],
                  ")hamming_distance:", hd)
            if min == -1 or min > hd:
                min = hd
            count += 1
    print("min hamming distance", min)
import random
import numpy as np
import pandas as pd
from hamming_parctice import hamming

df = pd.read_csv('sample.csv', names=['word', 'bin'])

m_d = hamming(df.iloc[0, 1], df.iloc[1, 1])

count = 1
for i in range(0, len(df)):
    for j in range(0, len(df)):
        if i < j:
            dist = hamming(df.iloc[i, 1], df.iloc[j, 1])
            print(count, "(", df.iloc[i, 0], df.iloc[j, 0],
                  ") hamming_distance :", dist)
            if m_d > dist:
                m_d = dist
            count = count + 1
print("min hamming distance", m_d)
import random
import numpy as np
import pandas as pd
from hamming_parctice import hamming

df = pd.read_csv('sample.csv', names = ['word', 'bin'])

min = hamming(df.iloc[1,1], df.iloc[2,1])
count = 1;
for i in range(0,len(df)):
	for j in range(0,len(df)):
		if i < j:
			hd = hamming(df.iloc[i,1],df.iloc[j,1])
			print(count,"(",df.iloc[i,0],df.iloc[j,0],")hamming_distance: ",hd)
			count = count + 1;
			if min > hd:
				min = hd

print("min hamming distance", min)

Exemple #6
0
import random
import numpy as np
import pandas as pd
from hamming_parctice import hamming

df = pd.read_csv('sample.csv', names=['word', 'bin'])

leng = df.shape
count = 1
for i in range(0, leng[0]):
    for j in range(i + 1, leng[0]):
        hd = hamming(df.iloc[i, 1], df.iloc[j, 1])
        print(count, "(", df.iloc[i, 0], df.iloc[j, 0], ")hamming_distance:",
              hd)
        if count == 1:
            min_ = hd
        if hd < min_:
            min_ = hd
        count = count + 1

print("min hamming distance", min_)
import random
import numpy as np
import pandas as pd
from hamming_parctice import hamming
from itertools import combinations

df = pd.read_csv('sample.csv', names=['word', 'bin'])

words = [df.iloc[i, 0] for i in range(0, len(df))]
bins = [df.iloc[i, 1] for i in range(0, len(df))]

count = 0
minimum_hd = 32
for alpha, beta in combinations(zip(words, bins), 2):
    hd = hamming(alpha[1], beta[1])
    print(count, "(", alpha[0], beta[0], ")", "hamming_distance: ", hd)
    if minimum_hd > hd:
        minimum_hd = hd
    count += 1
print("min hamming distance", minimum_hd)