def train(args): workspace = cfg.workspace te_fold = cfg.te_fold n_events = args.n_events snr = args.snr feature_dir = os.path.join(workspace, "features", "logmel", "n_events=%d" % n_events) yaml_dir = os.path.join(workspace, "mixed_audio", "n_events=%d" % n_events) (tr_x, tr_at_y, tr_sed_y, tr_na_list, te_x, te_at_y, te_sed_y, te_na_list) = pp_data.load_data(feature_dir=feature_dir, yaml_dir=yaml_dir, te_fold=te_fold, snr=snr, is_scale=is_scale) print(tr_x.shape, tr_at_y.shape) print(te_x.shape, te_at_y.shape) (_, n_time, n_freq) = tr_x.shape n_out = len(cfg.events) if False: for e in tr_x: plt.matshow(e.T, origin='lower', aspect='auto') plt.show() # Build model. lay_in = InputLayer(in_shape=(n_time, n_freq)) a = Reshape((1, n_time, n_freq))(lay_in) a = Conv2D(n_outfmaps=64, n_row=3, n_col=5, act='linear', strides=(1, 1), border_mode=(1, 2))(a) a = BN(axis=(0, 2, 3))(a) a = Activation('relu')(a) a = Conv2D(n_outfmaps=64, n_row=3, n_col=5, act='linear', strides=(1, 1), border_mode=(1, 2))(a) a = BN(axis=(0, 2, 3))(a) a = Activation('relu')(a) a = Dropout(p_drop=0.2)(a) a = Conv2D(n_outfmaps=64, n_row=3, n_col=5, act='linear', strides=(1, 1), border_mode=(1, 2))(a) a = BN(axis=(0, 2, 3))(a) a = Activation('relu')(a) a = Conv2D(n_outfmaps=64, n_row=3, n_col=5, act='linear', strides=(1, 1), border_mode=(1, 2))(a) a = BN(axis=(0, 2, 3))(a) a = Activation('relu')(a) a = Dropout(p_drop=0.2)(a) a = Conv2D(n_outfmaps=64, n_row=3, n_col=5, act='linear', strides=(1, 1), border_mode=(1, 2))(a) a = BN(axis=(0, 2, 3))(a) a = Activation('relu')(a) a = Conv2D(n_outfmaps=64, n_row=3, n_col=5, act='linear', strides=(1, 1), border_mode=(1, 2))(a) a = BN(axis=(0, 2, 3))(a) a = Activation('relu')(a) a = Dropout(p_drop=0.2)(a) a = Conv2D(n_outfmaps=n_out, n_row=1, n_col=1, act='sigmoid', border_mode=(0, 0), name='seg_masks')(a) a8 = Lambda(_global_avg_pooling, name='a8')(a) md = Model([lay_in], [a8]) md.compile() md.summary(is_logging=True) # Callbacks. md_dir = os.path.join(workspace, "models", pp_data.get_filename(__file__), "n_events=%d" % n_events, "fold=%d" % te_fold, "snr=%d" % snr) pp_data.create_folder(md_dir) save_model = SaveModel(md_dir, call_freq=50, type='iter', is_logging=True) validation = Validation(te_x=te_x, te_y=te_at_y, batch_size=50, call_freq=50, metrics=['binary_crossentropy'], dump_path=None, is_logging=True) callbacks = [save_model, validation] observe_nodes = [md.find_layer('seg_masks').output_] f_forward = md.get_observe_forward_func(observe_nodes) # Generator. tr_gen = DataGenerator(batch_size=32, type='train') eva_gen = DataGenerator2(batch_size=32, type='test') # Train. loss_ary = [] t1 = time.time() optimizer = Adam(1e-3) for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_at_y]): if md.iter_ % 50 == 0: logging.info("iter: %d tr_loss: %f time: %s" % ( md.iter_, np.mean(loss_ary), time.time() - t1, )) t1 = time.time() loss_ary = [] # if md.iter_ % 200 == 0: # write_out_at_sed(md, eva_gen, f_forward, te_x, te_at_y, te_sed_y, n_events, snr, te_fold) if md.iter_ == 5001: break loss = md.train_on_batch(batch_x, batch_y, loss_func='binary_crossentropy', optimizer=optimizer, callbacks=callbacks) loss_ary.append(loss)
### Build model lay_in = InputLayer(in_shape=(n_in, )) a = Dense(n_out=n_hid, act='relu', name='dense1')(lay_in) a = Dropout(p_drop=0.2)(a) a = Dense(n_out=n_hid, act='relu', name='dense2')(a) a = Dropout(p_drop=0.2)(a) lay_out = Dense(n_out=n_out, act='softmax')(a) md = Model(in_layers=[lay_in], out_layers=[lay_out]) md.compile() md.summary() # observe forward observe_nodes = [ md.find_layer('dense1').output_, md.find_layer('dense2').output_ ] f_forward = md.get_observe_forward_func(observe_nodes) print md.run_function(func=f_forward, z=[te_x], batch_size=500, tr_phase=0.) # observe backward md.set_gt_nodes(target_dim_list=[2]) loss_node = obj.categorical_crossentropy(md.out_nodes_[0], md.gt_nodes_[0]) gparams = K.grad(loss_node + md.reg_value_, md.params_) observe_nodes = gparams f_backward = md.get_observe_backward_func(observe_nodes) print md.run_function(func=f_backward, z=[te_x, te_y], batch_size=500, tr_phase=0.)
def train(): _loss_func = _jdc_loss_func0 # load data t1 = time.time() dict = cPickle.load( open( cfg.scrap_fd+'/denoise_enhance_pool_fft_all0.p', 'rb' ) ) tr_X, tr_mask, tr_y, tr_na_list, te_X, te_mask, te_y, te_na_list = dict['tr_X'], dict['tr_mask'], dict['tr_y'], dict['tr_na_list'], dict['te_X'], dict['te_mask'], dict['te_y'], dict['te_na_list'] t2 = time.time() tr_X = pp_data.wipe_click( tr_X, tr_na_list ) te_X = pp_data.wipe_click( te_X, te_na_list ) # balance data tr_X, tr_mask, tr_y = pp_data.BalanceData2( tr_X, tr_mask, tr_y ) te_X, te_mask, te_y = pp_data.BalanceData2( te_X, te_mask, te_y ) print tr_X.shape, tr_y.shape, te_X.shape, te_y.shape [n_songs, n_chunks, n_freq] = te_X.shape tr_y = tr_y.reshape( (len(tr_y), 1) ) te_y = te_y.reshape( (len(te_y), 1) ) # jdc model # classifier lay_z0 = InputLayer( (n_chunks,) ) # shape:(n_songs, n_chunks) keep the length of songs lay_in0 = InputLayer( (n_chunks, n_freq), name='in0' ) # shape: (n_songs, n_chunk, n_freq) lay_a1 = lay_in0 # lay_a1 = Lambda( _conv2d )( lay_a1 ) lay_a1 = Lambda( _reshape_3d_to_4d )( lay_a1 ) lay_a1 = Convolution2D( 32, 3, 3, act='relu', init_type='glorot_uniform', border_mode=(1,1), strides=(1,1), name='a11' )( lay_a1 ) lay_a1 = Dropout( 0.2 )( lay_a1 ) lay_a1 = MaxPool2D( pool_size=(1,2) )( lay_a1 ) lay_a1 = Convolution2D( 64, 3, 3, act='relu', init_type='glorot_uniform', border_mode=(1,1), strides=(1,1), name='a12' )( lay_a1 ) lay_a1 = Dropout( 0.2 )( lay_a1 ) lay_a1 = MaxPool2D( pool_size=(1,2) )( lay_a1 ) lay_a1 = Lambda( _reshape_4d_to_3d )( lay_a1 ) lay_a1 = Dense( n_hid, act='relu', name='a2' )( lay_a1 ) # shape: (n_songs, n_chunk, n_hid) lay_a1 = Dropout( 0.2 )( lay_a1 ) lay_a1 = Dense( n_hid, act='relu', name='a4' )( lay_a1 ) lay_a1 = Dropout( 0.2 )( lay_a1 ) lay_a1 = Dense( n_hid, act='relu', name='a6' )( lay_a1 ) lay_a1 = Dropout( 0.2 )( lay_a1 ) lay_a8 = Dense( n_out, act='sigmoid', init_type='zeros', b_init=0, name='a8' )( lay_a1 ) # shape: (n_songs, n_chunk, n_out) # detector lay_b1 = lay_in0 # shape: (n_songs, n_chunk, n_freq) lay_b2 = Lambda( _conv2d )( lay_b1 ) # shape: (n_songs, n_chunk, n_freq) lay_b2 = Lambda( _reshape_3d_to_4d )( lay_b1 ) lay_b2 = MaxPool2D( pool_size=(1,2) )( lay_b2 ) lay_b2 = Lambda( _reshape_4d_to_3d )( lay_b2 ) lay_b8 = Dense( n_out, act='hard_sigmoid', init_type='zeros', b_init=-2.3, name='b8' )( lay_b2 ) md = Model( in_layers=[lay_in0, lay_z0], out_layers=[lay_a8, lay_b8], any_layers=[] ) # print summary info of model md.summary() # callbacks (optional) # save model every n epoch (optional) pp_data.CreateFolder( cfg.wbl_dev_md_fd ) pp_data.CreateFolder( cfg.wbl_dev_md_fd+'/cnn_fft' ) save_model = SaveModel( dump_fd=cfg.wbl_dev_md_fd+'/cnn_fft', call_freq=20, type='iter' ) validation = Validation( tr_x=None, tr_y=None, va_x=None, va_y=None, te_x=[te_X, te_mask], te_y=te_y, batch_size=100, metrics=[_loss_func], call_freq=20, dump_path=None, type='iter' ) # callbacks function callbacks = [save_model, validation] # EM training md.set_gt_nodes( tr_y ) md.find_layer('a11').set_trainable_params( ['W','b'] ) md.find_layer('a12').set_trainable_params( ['W','b'] ) md.find_layer('a2').set_trainable_params( ['W','b'] ) md.find_layer('a4').set_trainable_params( ['W','b'] ) md.find_layer('a6').set_trainable_params( ['W','b'] ) md.find_layer('a8').set_trainable_params( ['W','b'] ) md.find_layer('b8').set_trainable_params( [] ) opt_classifier = Adam( 1e-3 ) f_classify = md.get_optimization_func( loss_func=_loss_func, optimizer=opt_classifier, clip=None ) md.find_layer('a11').set_trainable_params( [] ) md.find_layer('a12').set_trainable_params( [] ) md.find_layer('a2').set_trainable_params( [] ) md.find_layer('a4').set_trainable_params( [] ) md.find_layer('a6').set_trainable_params( [] ) md.find_layer('a8').set_trainable_params( [] ) md.find_layer('b8').set_trainable_params( ['W','b'] ) opt_detector = Adam( 1e-3 ) f_detector = md.get_optimization_func( loss_func=_loss_func, optimizer=opt_detector, clip=None ) _x, _y = md.preprocess_data( [tr_X, tr_mask], tr_y, shuffle=True ) for i1 in xrange(500): print '-----------------------' opt_classifier.reset() md.do_optimization_func_iter_wise( f_classify, _x, _y, batch_size=100, n_iters=80, callbacks=callbacks, verbose=1 ) print '-----------------------' opt_detector.reset() md.do_optimization_func_iter_wise( f_detector, _x, _y, batch_size=100, n_iters=20, callbacks=callbacks, verbose=1 )