Exemple #1
0
def get_placement_recipe(chosen_object, handarm_params, grasp_type):

    place_time = handarm_params['place_duration']
    down_speed = handarm_params['place_down_speed']

    # The twists are defined on the world frame
    down_twist = np.array([0, 0, -down_speed, 0, 0, 0])

    # assemble controller sequence
    control_sequence = []

    # 1. Place in IFCO
    control_sequence.append(
        ha.CartesianVelocityControlMode(down_twist,
                                        controller_name='PlaceInIFCO',
                                        name='PlaceInIFCO',
                                        reference_frame="world"))

    # 1b. Switch after a certain amount of time
    control_sequence.append(
        ha.TimeSwitch('PlaceInIFCO', 'softhand_open', duration=place_time))

    # 2. Release SKU
    control_sequence.append(
        ha.GeneralHandControlMode(goal=np.array([0]),
                                  name='softhand_open',
                                  synergy=1))

    # 2b. Switch when hand opening time ends
    control_sequence.append(
        ha.TimeSwitch('softhand_open', 'finished', duration=0.5))

    # 3. Block joints to finish motion
    control_sequence.append(ha.BlockJointControlMode(name='finished'))

    return control_sequence
Exemple #2
0
def create_surface_grasp(chosen_object, handarm_params, pregrasp_transform, alternative_behavior=None):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params['SurfaceGrasp']:
        params = handarm_params['SurfaceGrasp'][object_type]
    else:
        params = handarm_params['SurfaceGrasp']['object']
    # Get params per phase

    # Approach phase
    downward_force = params['downward_force']
    down_speed = params['down_speed']

    # Grasping phase
    lift_time = params['corrective_lift_duration']
    up_speed = params['up_speed']
    hand_closing_time = params['hand_closing_duration']
    hand_synergy = params['hand_closing_synergy']

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    # Set the twists to use TRIK controller with

    # Down speed is positive because it is defined on the EE frame
    down_twist = np.array([0, 0, down_speed, 0, 0, 0])
    # Slow Up speed is also positive because it is defined on the world frame
    up_twist = np.array([0, 0, up_speed, 0, 0, 0])

    # assemble controller sequence
    control_sequence = []

    # 0. Trigger pre-shaping the hand (if there is a synergy). The first 1 in the name represents a surface grasp.
    control_sequence.append(ha.BlockJointControlMode(name = 'softhand_preshape_1_1'))
    
    # 0b. Time to trigger pre-shape
    control_sequence.append(ha.TimeSwitch('softhand_preshape_1_1', 'PreGrasp', duration = hand_closing_time))

    # 1. Go above the object - Pregrasp
    control_sequence.append(ha.InterpolatedHTransformControlMode(pregrasp_transform, controller_name = 'GoAboveObject', goal_is_relative='0', name = 'PreGrasp'))
 
    # 1b. Switch when hand reaches the goal pose
    control_sequence.append(ha.FramePoseSwitch('PreGrasp', 'PrepareForMassMeasurement', controller = 'GoAboveObject', epsilon = '0.01'))
    
    # 2. Go to gravity compensation 
    control_sequence.append(ha.BlockJointControlMode(name = 'PrepareForMassMeasurement'))

    # 2b. Wait for a bit to allow vibrations to attenuate
    control_sequence.append(ha.TimeSwitch('PrepareForMassMeasurement', 'ReferenceMassMeasurement', duration = 0.5))

    # 3. Reference mass measurement with empty hand (TODO can this be replaced by offline calibration?)
    control_sequence.append(ha.BlockJointControlMode(name='ReferenceMassMeasurement'))  # TODO use gravity comp instead?

    # 3b. Switches when reference measurement was done
    # 3b.1 Successful reference measurement
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.REFERENCE_MEASUREMENT_SUCCESS.value]),
                                              ))

    # 3b.2 The grasp success estimator module is inactive
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
                                              ))

    # 3b.3 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(ha.TimeSwitch('ReferenceMassMeasurement', 'GoDown',
                                          duration=success_estimator_timeout))

    # 3b.4 There is no special switch for unknown error response (estimator signals REFERENCE_MEASUREMENT_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.

    # 4. Go down onto the object (relative in EE frame) - Godown
    control_sequence.append(ha.CartesianVelocityControlMode(down_twist,
                                             controller_name='GoDown',
                                             name="GoDown",
                                             reference_frame="EE"))

    # force threshold that if reached will trigger the closing of the hand
    force = np.array([0, 0, downward_force, 0, 0, 0])
    
    # 4b. Switch when force-torque sensor is triggered
    control_sequence.append(ha.ForceTorqueSwitch('GoDown',
                                                 'LiftHand',
                                                 goal = force,
                                                 norm_weights = np.array([0, 0, 1, 0, 0, 0]),
                                                 jump_criterion = "THRESH_UPPER_BOUND",
                                                 goal_is_relative = '1',
                                                 frame_id = 'world'))

    # 5. Lift upwards so the hand can inflate
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist, controller_name='CorrectiveLift', name="LiftHand",
                                             reference_frame="world"))

    # the 1 in softhand_close_1 represents a surface grasp. This way the strategy is encoded in the HA.
    mode_name_hand_closing = 'softhand_close_1_0'

    # 5b. We switch after a short time 
    control_sequence.append(ha.TimeSwitch('LiftHand', mode_name_hand_closing, duration=lift_time))

    # 6. Call hand controller
    control_sequence.append(ha.GeneralHandControlMode(goal = np.array([1]), name = mode_name_hand_closing, synergy = hand_synergy))
   
    # 6b. Switch when hand closing time ends
    control_sequence.append(ha.TimeSwitch(mode_name_hand_closing, 'GoUp_1', duration = hand_closing_time))

    return control_sequence
Exemple #3
0
def create_wall_grasp(chosen_object, wall_frame, handarm_params, pregrasp_transform, alternative_behavior=None):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params['WallGrasp']:
        params = handarm_params['WallGrasp'][object_type]
    else:
        params = handarm_params['WallGrasp']['object']

    # Get params per phase

    # Approach phase
    downward_force = params['downward_force']
    down_speed = params['down_speed']

    lift_time = params['corrective_lift_duration']
    up_speed = params['up_speed']

    wall_force = params['wall_force']
    slide_speed = params['slide_speed']

    # Grasping phase
    pre_grasp_twist = params['pre_grasp_twist']
    pre_grasp_rotate_time = params['pre_grasp_rotation_duration']
    hand_closing_time = params['hand_closing_duration']
    hand_synergy = params['hand_closing_synergy']

    # Post-grasping phase
    post_grasp_twist = params['post_grasp_twist']
    post_grasp_rotate_time = params['post_grasp_rotation_duration']

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    # Set the twists to use TRIK controller with

    # Down speed is negative because it is defined on the world frame
    down_twist = np.array([0, 0, -down_speed, 0, 0, 0])
    # Slow Up speed is positive because it is defined on the world frame
    up_twist = np.array([0, 0, up_speed, 0, 0, 0])
    # Slide twist is positive because it is defined on the EE frame
    slide_twist = np.array([0, 0, slide_speed, 0, 0, 0])

    control_sequence = []

    # 0 trigger pre-shaping the hand (if there is a synergy). The 2 in the name represents a wall grasp.
    control_sequence.append(ha.BlockJointControlMode(name='softhand_preshape_2_1'))
    
    # 0b. Time for pre-shape
    control_sequence.append(ha.TimeSwitch('softhand_preshape_2_1', 'PreGrasp', duration=hand_closing_time)) 

    # 1. Go above the object - Pregrasp
    control_sequence.append(ha.InterpolatedHTransformControlMode(pregrasp_transform, controller_name = 'GoAboveObject', goal_is_relative='0', name = 'PreGrasp'))
 
    # 1b. Switch when hand reaches the goal pose
    control_sequence.append(ha.FramePoseSwitch('PreGrasp', 'PrepareForMassMeasurement', controller = 'GoAboveObject', epsilon = '0.01'))
    
    # 2. Go to gravity compensation 
    control_sequence.append(ha.BlockJointControlMode(name = 'PrepareForMassMeasurement'))

    # 2b. Wait for a bit to allow vibrations to attenuate
    control_sequence.append(ha.TimeSwitch('PrepareForMassMeasurement', 'ReferenceMassMeasurement', duration = 0.5))

    # 3. Reference mass measurement with empty hand (TODO can this be replaced by offline calibration?)
    control_sequence.append(ha.BlockJointControlMode(name='ReferenceMassMeasurement'))  # TODO use gravity comp instead?

    # 3b. Switches when reference measurement was done
    # 3b.1 Successful reference measurement
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.REFERENCE_MEASUREMENT_SUCCESS.value]),
                                              ))

    # 3b.2 The grasp success estimator module is inactive
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
                                              ))

    # 3b.3 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(ha.TimeSwitch('ReferenceMassMeasurement', 'GoDown',
                                          duration=success_estimator_timeout))

    # 3b.4 There is no special switch for unknown error response (estimator signals REFERENCE_MEASUREMENT_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.


    # 4. Go down onto the object/table, in world frame
    control_sequence.append( ha.CartesianVelocityControlMode(down_twist,
                                             controller_name='GoDown',
                                             name="GoDown",
                                             reference_frame="world"))


    # 4b. Switch when force threshold is exceeded
    force = np.array([0, 0, downward_force, 0, 0, 0])
    control_sequence.append(ha.ForceTorqueSwitch('GoDown',
                                                 'LiftHand',
                                                 goal=force,
                                                 norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                                                 jump_criterion="THRESH_UPPER_BOUND",
                                                 goal_is_relative='1',
                                                 frame_id='world'))

    # 5. Lift upwards so the hand doesn't slide on table surface
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist, controller_name='Lift1', name="LiftHand",
                                             reference_frame="world"))

    # 5b. We switch after a short time as this allows us to do a small, precise lift motion
    control_sequence.append(ha.TimeSwitch('LiftHand', 'SlideToWall', duration=lift_time))

    # 6. Go towards the wall to slide object to wall
    control_sequence.append(
        ha.CartesianVelocityControlMode(slide_twist, controller_name='SlideToWall',
                                             name="SlideToWall", reference_frame="EE"))

    # 6b. Switch when the f/t sensor is triggered with normal force from wall
    force = np.array([0, 0, wall_force, 0, 0, 0])
    control_sequence.append(ha.ForceTorqueSwitch('SlideToWall', 'SlideBackFromWall', 'ForceSwitch', goal=force,
                                                 norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                                                 jump_criterion="THRESH_UPPER_BOUND", goal_is_relative='1',
                                                 frame_id='world', frame=wall_frame))

    # 7. Go back a bit to allow the hand to inflate
    control_sequence.append(
        ha.CartesianVelocityControlMode(pre_grasp_twist, controller_name='SlideBackFromWall',
                                             name="SlideBackFromWall", reference_frame="EE"))
    # The 2 in softhand_close_2 represents a wall grasp. This way the strategy is encoded in the HA.
    # The 0 encodes the synergy id
    mode_name_hand_closing = 'softhand_close_2_0'

    # 7b. We switch after a short time
    control_sequence.append(ha.TimeSwitch('SlideBackFromWall', mode_name_hand_closing, duration=pre_grasp_rotate_time))
    

    # 8. Maintain contact while closing the hand
    
    # Call general hand controller
    control_sequence.append(ha.GeneralHandControlMode(goal = np.array([1]), name  = mode_name_hand_closing, synergy = hand_synergy))
    

    # 8b. Switch when hand closing duration ends
    control_sequence.append(ha.TimeSwitch(mode_name_hand_closing, 'PostGraspRotate', duration=hand_closing_time))

    # 9. Rotate a bit to roll the object in the hand
    control_sequence.append(
        ha.CartesianVelocityControlMode(post_grasp_twist, controller_name='PostGraspRotate',
                                             name="PostGraspRotate", reference_frame="EE"))
    # 9b. We switch after a short time
    control_sequence.append(ha.TimeSwitch('PostGraspRotate', 'GoUp_1', duration=post_grasp_rotate_time))
    
    return control_sequence
Exemple #4
0
def get_transport_recipe(chosen_object,
                         handarm_params,
                         reaction,
                         FailureCases,
                         grasp_type,
                         alternative_behavior=None):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params[grasp_type]:
        params = handarm_params[grasp_type][object_type]
    else:
        params = handarm_params[grasp_type]['object']

    lift_time = params['lift_duration']
    up_speed = params['up_speed']
    drop_off_pose = handarm_params['drop_off_pose']

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    # Up speed is positive because it is defined on the world frame
    up_twist = np.array([0, 0, up_speed, 0, 0, 0])

    # assemble controller sequence
    control_sequence = []

    # 1. Lift upwards
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist,
                                        controller_name='GoUpHTransform',
                                        name='GoUp_1',
                                        reference_frame="world"))

    # 1b. Switch after half the lift time
    control_sequence.append(
        ha.TimeSwitch('GoUp_1',
                      'EstimationMassMeasurement',
                      duration=lift_time / 2))

    # 2. Measure the mass again and estimate number of grasped objects (grasp success estimation)
    control_sequence.append(
        ha.BlockJointControlMode(name='EstimationMassMeasurement'))

    # 2b. Switches after estimation measurement was done
    target_cm_okay = 'GoUp_2'

    # 2b.1 No object was grasped => go to failure mode.
    target_cm_estimation_no_object = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_NO_OBJECT, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_no_object,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_NO_OBJECT.value]),
        ))

    # 2b.2 More than one object was grasped => failure
    target_cm_estimation_too_many = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_TOO_MANY, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_too_many,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_TOO_MANY.value]),
        ))

    # 2b.3 Exactly one object was grasped => success (continue lifting the object and go to drop off)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_OKAY.value]),
        ))

    # 2b.4 The grasp success estimator module is inactive => directly continue lifting the object and go to drop off
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
        ))

    # 2b.5 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(
        ha.TimeSwitch('EstimationMassMeasurement',
                      target_cm_okay,
                      duration=success_estimator_timeout))

    # 2b.6 There is no special switch for unknown error response (estimator signals ESTIMATION_RESULT_UNKNOWN_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.

    # 3. After estimation measurement control modes.
    extra_failure_cms = set()
    if target_cm_estimation_no_object != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_no_object)
    if target_cm_estimation_too_many != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_too_many)

    for cm in extra_failure_cms:
        if cm.startswith('failure_rerun'):
            # 3.1 Failure control mode representing grasping failure, which might be corrected by re-running the plan.
            control_sequence.append(ha.BlockJointControlMode(name=cm))
        if cm.startswith('failure_replan'):
            # 3.2 Failure control mode representing grasping failure, which can't be corrected and requires to re-plan.
            control_sequence.append(ha.BlockJointControlMode(name=cm))

    # 3.3 Success control mode. Lift hand even further
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist,
                                        controller_name='GoUpHTransform',
                                        name=target_cm_okay,
                                        reference_frame="world"))

    # 3b. Switch after half the lift time
    control_sequence.append(
        ha.TimeSwitch(target_cm_okay, 'GoDropOff', duration=lift_time / 2))

    # 4. Go above the object - Pregrasp
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(drop_off_pose,
                                             controller_name='GoToDropPose',
                                             goal_is_relative='0',
                                             name='GoDropOff'))

    # 4b. Switch when hand reaches the goal pose
    control_sequence.append(
        ha.FramePoseSwitch('GoDropOff',
                           'PlaceInIFCO',
                           controller='GoToDropPose',
                           epsilon='0.01'))

    return control_sequence
def create_hybrid_automaton(roblib_trajectory):
    hybrid_automaton = ha.HybridAutomaton(current_control_mode='goto_0')
    # go through trajectory points and add control mode + switch
    points = roblib_trajectory.shape[0]
    in_contact = False
    for t in range(points):
        # add motion depending on contact change
        next_in_contact = (roblib_trajectory[t, 7] == 1)
        normal = roblib_trajectory[t, 8:11]
        normal_undefined = np.linalg.norm(normal) == 0

        ctrl_mode_name = 'goto_{}'.format(t)
        next_ctrl_mode_name = 'goto_{}'.format(t + 1)
        ctrller_name = 'cntrl_{}'.format(t)

        mykp = np.array([300, 200, 150, 200, 10, 10, 5])
        mykv = np.array([2, 4, 2, 0.8, 0.2, 0.2, 0.15])
        #mykp = np.array([900, 2500, 600, 500, 50, 50, 8])
        #mykv = np.array([10, 20, 5, 2, 0.5, 0.5, 0.05])
        myv_max = np.array([0.1, 0.04])  #np.array([0.25, 0.08])

        if absolute_motion:
            if t == 0:
                print "(absolute goal)"
                rlab_traj = roblib_trajectory[:, :7].transpose()
                print rlab_traj
                ctrl_mode = ha.JointControlMode(rlab_traj,
                                                name=ctrl_mode_name,
                                                controller_name=ctrller_name)
                # that's important to avoid jerky behavior on the spot! --> it's actually the minimum_completion_time
                #ctrl_mode.controlset.controllers[0].properties['completion_times'] = '[1,1]1.0'
                ctrl_mode.controlset.controllers[0].properties['kp'] = mykp
                ctrl_mode.controlset.controllers[0].properties['kv'] = mykv
                ctrl_switch = ha.JointConfigurationSwitch(
                    ctrl_mode_name,
                    next_ctrl_mode_name,
                    controller=ctrller_name,
                    epsilon=str(math.radians(5.0)))

        elif (not in_contact or normal_undefined) and not next_in_contact:
            #if True:
            # free space motion
            print "(free space -> free space)"
            if t == 0:
                ctrl_mode = ha.JointControlMode(roblib_trajectory[t, :7],
                                                name=ctrl_mode_name,
                                                controller_name=ctrller_name)
                # that's important to avoid jerky behavior on the spot! --> it's actually the minimum_completion_time
                ctrl_mode.controlset.controllers[0].properties[
                    'completion_times'] = '[1,1]1.0'
                #ctrl_mode.controlset.controllers[0].properties['kp'] = mykp
                #ctrl_mode.controlset.controllers[0].properties['kv'] = mykv
                ctrl_switch = ha.JointConfigurationSwitch(
                    ctrl_mode_name,
                    next_ctrl_mode_name,
                    controller=ctrller_name,
                    epsilon=str(math.radians(5.0)))
            elif t == (points - 1):  # last one
                goal = roblib_trajectory[t, :7] - roblib_trajectory[t - 1, :7]
                ctrl_mode = ha.JointControlMode(goal,
                                                goal_is_relative='1',
                                                name=ctrl_mode_name,
                                                controller_name=ctrller_name)
                ctrl_switch = ha.JointConfigurationSwitch(
                    ctrl_mode_name,
                    next_ctrl_mode_name,
                    controller=ctrller_name,
                    epsilon=str(math.radians(5.0)),
                    goal_is_relative='1')
                #tmp = ha.ForceTorqueSwitch(ctrl_mode_name, next_ctrl_mode_name, goal = np.array([0., 0., 0., 0, 0, 0]), norm_weights = np.array([1, 1, 1, 0, 0, 0]), negate = '1', epsilon='1', jump_criterion = "NORM_L2", frame_id = '', goal_is_relative = '1')
                #ctrl_switch.add(tmp.con)
            else:
                goal = (roblib_trajectory[t, :7] -
                        roblib_trajectory[t - 1, :7]) * 2.
                ctrl_mode = ha.JointControlMode(goal,
                                                goal_is_relative='1',
                                                name=ctrl_mode_name,
                                                controller_name=ctrller_name)
                ctrl_switch = ha.JointConfigurationSwitch(
                    ctrl_mode_name,
                    next_ctrl_mode_name,
                    name='TheSpecialOne',
                    controller=ctrller_name,
                    epsilon=str(math.radians(5.0)),
                    goal_is_relative='1')

        elif (not in_contact or normal_undefined) and next_in_contact:
            # move until contact
            print "(free space -> in contact)"
            if False:
                goal = extrapolate_transform(roblib_trajectory[t - 1, -7:],
                                             roblib_trajectory[t, -7:], 1.2)
                ctrl_mode = ha.HTransformControlMode(
                    goal,
                    name=ctrl_mode_name,
                    controller_name=ctrller_name,
                    goal_is_relative='1')
                ctrl_mode.controlset.controllers[0].properties[
                    'v_max'] = myv_max

            goal = (roblib_trajectory[t, :7] -
                    roblib_trajectory[t - 1, :7]) * 2.
            #goal = extrapolate_configuration(roblib_trajectory[t-1, :7], roblib_trajectory[t, :7], 1.3)
            ctrl_mode = ha.JointControlMode(goal,
                                            goal_is_relative='1',
                                            name=ctrl_mode_name,
                                            controller_name=ctrller_name)
            #ctrl_mode.controlset.controllers[0].properties['kp'] = mykp
            #ctrl_mode.controlset.controllers[0].properties['kv'] = mykv
            ctrl_mode.controlset.controllers[0].properties['v_max'] = np.array(
                [0.1] * 7)

            ctrl_switch = ha.ForceTorqueSwitch(
                ctrl_mode_name,
                next_ctrl_mode_name,
                epsilon='4',
                goal=np.array([0., 0., 0., 0, 0, 0]),
                norm_weights=np.array([1, 1, 1, 0, 0, 0]),
                negate='1',
                jump_criterion="NORM_L2",
                frame_id='',
                goal_is_relative='1')
            time_switch = ha.TimeSwitch(ctrl_mode_name,
                                        next_ctrl_mode_name,
                                        duration=1.0)
            ctrl_switch.add(time_switch.conditions[0])

        elif in_contact and next_in_contact:
            # move until contact changes
            print "(in contact -> in contact)"
            goal = extrapolate_configuration(roblib_trajectory[t - 1, :7],
                                             roblib_trajectory[t, :7], 1.5)
            ctrl_mode = ha.JointControlMode(goal,
                                            name=ctrl_mode_name,
                                            controller_name=ctrller_name)
            ctrl_switch = ha.ForceTorqueSwitch(
                ctrl_mode_name,
                next_ctrl_mode_name,
                goal=np.array([0., 0., 0., 0, 0, 0]),
                norm_weights=np.array([1, 1, 1, 0, 0, 0]),
                negate='1',
                epsilon='1',
                jump_criterion="NORM_L2",
                frame_id='',
                goal_is_relative='1')

        elif in_contact and not next_in_contact:
            # move until no more contact
            print "(in contact -> free space) normal_defined:", ~normal_undefined
            ft_in_ee = tra.translation_matrix([0, 0, 0])

            goal = extrapolate_transform([0, 0, 0, 0, 0, 0, 1],
                                         roblib_trajectory[t, -7:], 1.0)
            delta = extrapolate_transform(roblib_trajectory[t - 1, -7:],
                                          roblib_trajectory[t, -7:], 1.0)

            normal_in_ee = np.dot(
                tra.inverse_matrix(
                    transform_from_vector(roblib_trajectory[t - 1,
                                                            -7:]))[:3, :3],
                normal)
            normal_in_ft = np.dot(ft_in_ee[:3, :3], normal_in_ee)

            print "Normal in world: ", normal  # in world
            print "Normal in ee: ", normal_in_ee

            # project onto normal plane
            print delta[:3, 3]
            #print desired_delta
            dist = np.linalg.norm(delta[:3, 3])
            delta[:3, 3] = delta[:3, 3] * (0.03 / dist)
            print dist
            print normal_in_ft
            print delta
            #ctrl_mode = ha.HTransformControlMode(delta, name = ctrl_mode_name, controller_name = ctrller_name, goal_is_relative='1')
            #ctrl_mode = ha.InterpolatedHTransformImpedanceControlMode(goal, name = ctrl_mode_name, controller_name = ctrller_name, goal_is_relative='1')
            # three things needed:
            # 1) desired_displacement: delta vector in ee frame
            # 2) force_gradient: normal vector in ee frame
            ctrl_mode = ha.ControlMode(name=ctrl_mode_name).set(
                ha.NakamuraControlSet().add(
                    ha.ForceHTransformController(
                        name=ctrller_name,
                        desired_distance=dist * 1.2,
                        desired_displacement=tra.translation_matrix(delta[:3,
                                                                          3]),
                        #force_gradient=tra.translation_matrix([0, 0, 0.005]),
                        force_gradient=tra.translation_matrix(-normal_in_ee *
                                                              0.0025),
                        desired_force_dimension=np.array(-normal_in_ft +
                                                         [0, 0, 0]))))
            ctrl_mode.controlset.controllers[0].properties[
                'desired_min_force'] = '-5'
            ctrl_mode.controlset.controllers[0].properties[
                'desired_max_force'] = '-3'
            #ctrl_mode = ha.ControlMode(name = ctrl_mode_name).set(ha.NakamuraControlSet().add(ha.ForceHTransformController(name = ctrller_name, desired_distance = dist*1.2, desired_displacement=tra.translation_matrix(delta[:3, 3]), force_gradient=tra.translation_matrix(normal * 0.005), desired_force_dimension=np.array([0, 0, 1, 0, 0, 0]))))

            ctrl_mode.controlset.controllers[0].properties['v_max'] = np.array(
                [0.01, 0.01])  #myv_max

            ctrl_switch = ha.ForceTorqueSwitch(
                ctrl_mode_name,
                next_ctrl_mode_name,
                epsilon='1.2',
                goal_is_relative='0',
                negate='0',
                goal=np.array([0., 0., 0., 0, 0, 0]),
                norm_weights=np.array([1, 1, 1, 0, 0, 0]),
                jump_criterion="NORM_L1",
                frame_id='')
            pose_condition = ha.JumpCondition('FrameDisplacementSensor',
                                              goal=np.zeros(3),
                                              controller='',
                                              jump_criterion='NORM_L2',
                                              epsilon='{}'.format(dist * 0.5),
                                              negate='1',
                                              goal_is_relative='1',
                                              frame_id='EE',
                                              norm_weights=np.ones(3))
            ctrl_switch.add(pose_condition)
            #del ctrl_switch.conditions[0]

        if t == (points - 1):
            hybrid_automaton.add([ctrl_mode])
        elif not absolute_motion:
            hybrid_automaton.add([ctrl_mode, ctrl_switch])

        in_contact = next_in_contact

    # add final gravity mode
    #hybrid_automaton.add(ha.GravityCompensationMode(name = 'goto_{}'.format(points)))
    #hybrid_automaton.add(ha.JointControlMode(np.zeros(7), name = 'goto_{}'.format(points), goal_is_relative='1'))

    return hybrid_automaton
Exemple #6
0
def create_wall_grasp(object_frame,
                      bounding_box,
                      wall_frame,
                      handarm_params,
                      object_type,
                      pre_grasp_pose=None,
                      alternative_behavior=None):

    # Get the parameters from the handarm_parameters.py file
    obj_type_params = {}
    obj_params = {}
    if object_type in handarm_params['wall_grasp']:
        obj_type_params = handarm_params['wall_grasp'][object_type]
    if 'object' in handarm_params['wall_grasp']:
        obj_params = handarm_params['wall_grasp']['object']

    hand_transform = getParam(obj_type_params, obj_params, 'hand_transform')
    downward_force = getParam(obj_type_params, obj_params, 'downward_force')
    wall_force = getParam(obj_type_params, obj_params, 'wall_force')
    slide_IFCO_speed = getParam(obj_type_params, obj_params, 'slide_speed')
    pre_approach_transform = getParam(obj_type_params, obj_params,
                                      'pre_approach_transform')
    scooping_angle_deg = getParam(obj_type_params, obj_params,
                                  'scooping_angle_deg')

    init_joint_config = handarm_params['init_joint_config']

    thumb_pos_preshape = getParam(obj_type_params, obj_params,
                                  'thumb_pos_preshape')
    post_grasp_transform = getParam(obj_type_params, obj_params,
                                    'post_grasp_transform')

    rotate_time = handarm_params['rotate_duration']
    down_IFCO_speed = handarm_params['down_IFCO_speed']

    # Set the twists to use TRIK controller with

    # Down speed is negative because it is defined on the world frame
    down_IFCO_twist = np.array([0, 0, -down_IFCO_speed, 0, 0, 0])

    # Slide speed is positive because it is defined on the EE frame + rotation of the scooping angle
    slide_IFCO_twist_matrix = tra.rotation_matrix(
        math.radians(scooping_angle_deg),
        [1, 0, 0]).dot(tra.translation_matrix([0, 0, slide_IFCO_speed]))
    slide_IFCO_twist = np.array([
        slide_IFCO_twist_matrix[0, 3], slide_IFCO_twist_matrix[1, 3],
        slide_IFCO_twist_matrix[2, 3], 0, 0, 0
    ])

    rviz_frames = []

    if pre_grasp_pose is None:
        # this is the EC frame. It is positioned like object and oriented to the wall
        ec_frame = np.copy(wall_frame)
        ec_frame[:3, 3] = tra.translation_from_matrix(object_frame)
        ec_frame = ec_frame.dot(hand_transform)

        pre_approach_pose = ec_frame.dot(pre_approach_transform)

    else:
        pre_approach_pose = pre_grasp_pose

    # Rviz debug frames
    rviz_frames.append(object_frame)
    rviz_frames.append(pre_approach_pose)
    # rviz_frames.append(pm.toMatrix(pm.fromMsg(res.reachable_hand_pose)))

    control_sequence = []

    # # 0. Go to initial nice mid-joint configuration
    # control_sequence.append(ha.JointControlMode(goal = init_joint_config, goal_is_relative = '0', name = 'init', controller_name = 'GoToInitController'))

    # # 0b. Switch when config is reached
    # control_sequence.append(ha.JointConfigurationSwitch('init', 'Pregrasp', controller = 'GoToInitController', epsilon = str(math.radians(1.0))))

    # 1. Go above the object
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(pre_approach_pose,
                                             controller_name='GoAboveObject',
                                             goal_is_relative='0',
                                             name="Pregrasp"))

    # 1b. Switch when hand reaches the goal pose
    control_sequence.append(
        ha.FramePoseSwitch('Pregrasp',
                           'StayStill',
                           controller='GoAboveObject',
                           epsilon='0.01'))

    # 2. Go to gravity compensation
    control_sequence.append(
        ha.CartesianVelocityControlMode(np.array([0, 0, 0, 0, 0, 0]),
                                        controller_name='StayStillCtrl',
                                        name="StayStill",
                                        reference_frame="EE"))

    # 2b. Wait for a bit to allow vibrations to attenuate
    control_sequence.append(
        ha.TimeSwitch('StayStill',
                      'softhand_pretension',
                      duration=handarm_params['stay_still_duration']))

    # 3. Pretension
    speed = np.array([20])
    thumb_pos = np.array([0, 0, 0])
    diff_pos = np.array([0, 0, 15])
    thumb_contact_force = np.array([0])
    thumb_grasp_force = np.array([0])
    diff_contact_force = np.array([0])
    diff_grasp_force = np.array([0])
    thumb_pretension = np.array([0])
    diff_pretension = np.array([15])
    force_feedback_ratio = np.array([0])
    prox_level = np.array([0])
    touch_level = np.array([0])
    mode = np.array([0])
    command_count = np.array([0])

    control_sequence.append(
        ha.ros_CLASHhandControlMode(goal=np.concatenate(
            (speed, thumb_pos, diff_pos, thumb_contact_force,
             thumb_grasp_force, diff_contact_force, diff_grasp_force,
             thumb_pretension, diff_pretension, force_feedback_ratio,
             prox_level, touch_level, mode, command_count)),
                                    name='softhand_pretension'))

    # 3b. Switch when hand closing time ends
    control_sequence.append(
        ha.TimeSwitch('softhand_pretension',
                      'GoDown',
                      duration=handarm_params['hand_closing_duration']))

    # 4. Go down onto the object/table, in world frame
    control_sequence.append(
        ha.CartesianVelocityControlMode(down_IFCO_twist,
                                        controller_name='GoDown',
                                        name="GoDown",
                                        reference_frame="world"))

    # 4b. Switch when force threshold is exceeded
    force = np.array([0, 0, downward_force, 0, 0, 0])
    control_sequence.append(
        ha.ForceTorqueSwitch('GoDown',
                             'CloseBeforeSlide',
                             goal=force,
                             norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                             jump_criterion="THRESH_UPPER_BOUND",
                             goal_is_relative='1',
                             frame_id='world',
                             port='2'))

    # 5. Close a bit before sliding
    speed = np.array([30])
    thumb_pos = thumb_pos_preshape
    diff_pos = np.array([10, 15, 0])
    thumb_contact_force = np.array([0])
    thumb_grasp_force = np.array([0])
    diff_contact_force = np.array([0])
    diff_grasp_force = np.array([0])
    thumb_pretension = np.array([15])
    diff_pretension = np.array([15])
    force_feedback_ratio = np.array([0])
    prox_level = np.array([0])
    touch_level = np.array([0])
    mode = np.array([0])
    command_count = np.array([1])

    control_sequence.append(
        ha.ros_CLASHhandControlMode(goal=np.concatenate(
            (speed, thumb_pos, diff_pos, thumb_contact_force,
             thumb_grasp_force, diff_contact_force, diff_grasp_force,
             thumb_pretension, diff_pretension, force_feedback_ratio,
             prox_level, touch_level, mode, command_count)),
                                    name='CloseBeforeSlide'))

    # 5b. Time switch
    control_sequence.append(
        ha.TimeSwitch('CloseBeforeSlide',
                      'SlideToWall',
                      duration=handarm_params['hand_closing_duration']))

    # 6. Go towards the wall to slide object to wall
    control_sequence.append(
        ha.CartesianVelocityControlMode(slide_IFCO_twist,
                                        controller_name='SlideToWall',
                                        name="SlideToWall",
                                        reference_frame="EE"))

    # 6b. Switch when the f/t sensor is triggered with normal force from wall
    force = np.array([0, 0, wall_force, 0, 0, 0])
    control_sequence.append(
        ha.ForceTorqueSwitch('SlideToWall',
                             'softhand_close',
                             'ForceSwitch',
                             goal=force,
                             norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                             jump_criterion="THRESH_UPPER_BOUND",
                             goal_is_relative='1',
                             frame_id='world',
                             frame=wall_frame,
                             port='2'))

    # 7. Close the hand
    speed = np.array([30])
    thumb_pos = np.array([0, 50, 30])
    diff_pos = np.array([55, 50, 20])
    thumb_contact_force = np.array([0])
    thumb_grasp_force = np.array([0])
    diff_contact_force = np.array([0])
    diff_grasp_force = np.array([0])
    thumb_pretension = np.array([15])
    diff_pretension = np.array([15])
    force_feedback_ratio = np.array([0])
    prox_level = np.array([0])
    touch_level = np.array([0])
    mode = np.array([0])
    command_count = np.array([1])

    control_sequence.append(
        ha.ros_CLASHhandControlMode(goal=np.concatenate(
            (speed, thumb_pos, diff_pos, thumb_contact_force,
             thumb_grasp_force, diff_contact_force, diff_grasp_force,
             thumb_pretension, diff_pretension, force_feedback_ratio,
             prox_level, touch_level, mode, command_count)),
                                    name='softhand_close'))

    # 7b. Switch when hand closing time ends
    control_sequence.append(
        ha.TimeSwitch('softhand_close',
                      'PostGraspRotate',
                      duration=handarm_params['hand_closing_duration']))

    # 8. Rotate hand after closing and before lifting it up relative to current hand pose
    control_sequence.append(
        ha.CartesianVelocityControlMode(post_grasp_transform,
                                        controller_name='PostGraspRotate',
                                        name='PostGraspRotate',
                                        reference_frame='EE'))

    # 8b. Switch when hand rotated
    control_sequence.append(
        ha.TimeSwitch('PostGraspRotate', 'GoUp', duration=rotate_time))

    return control_sequence, rviz_frames
Exemple #7
0
def create_surface_grasp(object_frame,
                         bounding_box,
                         handarm_params,
                         object_type,
                         pre_grasp_pose=None,
                         alternative_behavior=None):

    # Get the parameters from the handarm_parameters.py file
    obj_type_params = {}
    obj_params = {}
    if (object_type in handarm_params['surface_grasp']):
        obj_type_params = handarm_params['surface_grasp'][object_type]
    if 'object' in handarm_params['surface_grasp']:
        obj_params = handarm_params['surface_grasp']['object']

    hand_transform = getParam(obj_type_params, obj_params, 'hand_transform')
    downward_force = getParam(obj_type_params, obj_params, 'downward_force')
    ee_in_goal_frame = getParam(obj_type_params, obj_params,
                                'ee_in_goal_frame')
    lift_time = getParam(obj_type_params, obj_params, 'short_lift_duration')
    init_joint_config = handarm_params['init_joint_config']

    down_IFCO_speed = handarm_params['down_IFCO_speed']
    up_IFCO_speed = handarm_params['up_IFCO_speed']

    thumb_pos_closing = getParam(obj_type_params, obj_params, 'thumb_pos')
    diff_pos_closing = getParam(obj_type_params, obj_params, 'diff_pos')
    thumb_pos_preshape = getParam(obj_type_params, obj_params,
                                  'thumb_pos_preshape')
    diff_pos_preshape = getParam(obj_type_params, obj_params,
                                 'diff_pos_preshape')

    zflip_transform = tra.rotation_matrix(math.radians(180.0), [0, 0, 1])
    if object_frame[0][1] < 0:
        object_frame = object_frame.dot(zflip_transform)

    if pre_grasp_pose is None:
        # Set the initial pose above the object
        goal_ = np.copy(object_frame)
        goal_ = goal_.dot(
            hand_transform
        )  #this is the pre-grasp transform of the signature frame expressed in the world
        goal_ = goal_.dot(ee_in_goal_frame)
    else:
        goal_ = pre_grasp_pose

    # Set the twists to use TRIK controller with

    # Down speed is positive because it is defined on the EE frame
    down_IFCO_twist = np.array([0, 0, down_IFCO_speed, 0, 0, 0])
    # Slow Up speed is also positive because it is defined on the world frame
    up_IFCO_twist = np.array([0, 0, up_IFCO_speed, 0, 0, 0])

    # Set the frames to visualize with RViz
    rviz_frames = []
    rviz_frames.append(object_frame)
    rviz_frames.append(goal_)
    # rviz_frames.append(pm.toMatrix(pm.fromMsg(res.reachable_hand_pose)))

    # assemble controller sequence
    control_sequence = []

    # # 0. Go to initial nice mid-joint configuration
    # control_sequence.append(ha.JointControlMode(goal = init_joint_config, goal_is_relative = '0', name = 'init', controller_name = 'GoToInitController'))

    # # 0b. Switch when config is reached
    # control_sequence.append(ha.JointConfigurationSwitch('init', 'Pregrasp', controller = 'GoToInitController', epsilon = str(math.radians(1.0))))

    # 1. Go above the object - Pregrasp
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(goal_,
                                             controller_name='GoAboveObject',
                                             goal_is_relative='0',
                                             name='Pregrasp'))

    # 1b. Switch when hand reaches the goal pose
    control_sequence.append(
        ha.FramePoseSwitch('Pregrasp',
                           'StayStill',
                           controller='GoAboveObject',
                           epsilon='0.01'))

    # 2. Go to gravity compensation
    control_sequence.append(
        ha.CartesianVelocityControlMode(np.array([0, 0, 0, 0, 0, 0]),
                                        controller_name='StayStillCtrl',
                                        name="StayStill",
                                        reference_frame="EE"))

    # 2b. Wait for a bit to allow vibrations to attenuate
    control_sequence.append(
        ha.TimeSwitch('StayStill',
                      'softhand_preshape',
                      duration=handarm_params['stay_still_duration']))

    speed = np.array([20])
    thumb_pos = thumb_pos_preshape
    diff_pos = diff_pos_preshape
    thumb_contact_force = np.array([0])
    thumb_grasp_force = np.array([0])
    diff_contact_force = np.array([0])
    diff_grasp_force = np.array([0])
    thumb_pretension = np.array([0])
    diff_pretension = np.array([0])
    force_feedback_ratio = np.array([0])
    prox_level = np.array([0])
    touch_level = np.array([0])
    mode = np.array([0])
    command_count = np.array([0])

    # 3. Preshape the hand
    control_sequence.append(
        ha.ros_CLASHhandControlMode(goal=np.concatenate(
            (speed, thumb_pos, diff_pos, thumb_contact_force,
             thumb_grasp_force, diff_contact_force, diff_grasp_force,
             thumb_pretension, diff_pretension, force_feedback_ratio,
             prox_level, touch_level, mode, command_count)),
                                    name='softhand_preshape'))

    # 3b. Switch when hand is preshaped
    control_sequence.append(
        ha.TimeSwitch('softhand_preshape',
                      'GoDown',
                      duration=handarm_params['hand_closing_duration']))

    # 4. Go down onto the object (relative in EE frame) - Godown
    control_sequence.append(
        ha.CartesianVelocityControlMode(down_IFCO_twist,
                                        controller_name='GoDown',
                                        name="GoDown",
                                        reference_frame="EE"))

    # 4b. Switch when force-torque sensor is triggered
    force = np.array([0, 0, downward_force, 0, 0, 0])
    control_sequence.append(
        ha.ForceTorqueSwitch('GoDown',
                             'LiftHand',
                             goal=force,
                             norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                             jump_criterion="THRESH_UPPER_BOUND",
                             goal_is_relative='1',
                             frame_id='world',
                             port='2'))

    # 5. Lift upwards so the hand can close
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_IFCO_twist,
                                        controller_name='Lift1',
                                        name="LiftHand",
                                        reference_frame="world"))

    # 5b. We switch after a short time
    control_sequence.append(
        ha.TimeSwitch('LiftHand', 'softhand_close', duration=lift_time))

    # 6. Close the hand
    speed = np.array([30])
    thumb_pos = thumb_pos_closing
    diff_pos = diff_pos_closing
    thumb_contact_force = np.array([0])
    thumb_grasp_force = np.array([0])
    diff_contact_force = np.array([0])
    diff_grasp_force = np.array([0])
    thumb_pretension = np.array([15])
    diff_pretension = np.array([15])
    force_feedback_ratio = np.array([0])
    prox_level = np.array([0])
    touch_level = np.array([0])
    mode = np.array([0])
    command_count = np.array([2])

    control_sequence.append(
        ha.ros_CLASHhandControlMode(goal=np.concatenate(
            (speed, thumb_pos, diff_pos, thumb_contact_force,
             thumb_grasp_force, diff_contact_force, diff_grasp_force,
             thumb_pretension, diff_pretension, force_feedback_ratio,
             prox_level, touch_level, mode, command_count)),
                                    name='softhand_close'))

    # 6b. Switch when hand closing time ends
    control_sequence.append(
        ha.TimeSwitch('softhand_close',
                      'GoUp',
                      duration=handarm_params['hand_closing_duration']))

    return control_sequence, rviz_frames
Exemple #8
0
def get_transport_recipe(chosen_object, handarm_params, reaction, FailureCases,
                         grasp_type):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params[grasp_type]:
        params = handarm_params[grasp_type][object_type]
    else:
        params = handarm_params[grasp_type]['object']

    # ############################ #
    # Get params
    # ############################ #

    up_dist = params['up_dist']

    # split the lifted distance into two consecutive lifts (with success estimation in between)
    scale_up = 0.7
    dir_up1 = tra.translation_matrix([0, 0, scale_up * up_dist])
    dir_up2 = tra.translation_matrix([0, 0, (1.0 - scale_up) * up_dist])

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    drop_off_config = handarm_params['drop_off_config']

    # ############################ #
    # Assemble controller sequence
    # ############################ #

    control_sequence = []

    # 1. Lift upwards a little bit (half way up)
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(dir_up1,
                                             controller_name='GoUpHTransform',
                                             name='GoUp_1',
                                             goal_is_relative='1',
                                             reference_frame="world"))

    # 1b. Switch when joint configuration (half way up) is reached
    control_sequence.append(
        ha.FramePoseSwitch('GoUp_1',
                           'PrepareForEstimationMassMeasurement',
                           controller='GoUpHTransform',
                           epsilon='0.01',
                           goal_is_relative='1',
                           reference_frame="world"))

    # 2. Hold current joint config
    control_sequence.append(
        ha.BlockJointControlMode(name='PrepareForEstimationMassMeasurement'))

    # 2b. Wait for a bit to allow vibrations to attenuate # TODO check if this is required...
    control_sequence.append(
        ha.TimeSwitch('PrepareForEstimationMassMeasurement',
                      'EstimationMassMeasurement',
                      duration=0.5))

    # 3. Measure the mass again and estimate number of grasped objects (grasp success estimation)
    control_sequence.append(
        ha.BlockJointControlMode(name='EstimationMassMeasurement'))

    # 3b. Switches after estimation measurement was done
    target_cm_okay = 'GoUp_2'

    # 3b.1 No object was grasped => go to failure mode.
    target_cm_estimation_no_object = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_NO_OBJECT, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_no_object,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_NO_OBJECT.value]),
        ))

    # 3b.2 More than one object was grasped => failure
    target_cm_estimation_too_many = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_TOO_MANY, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_too_many,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_TOO_MANY.value]),
        ))

    # 3b.3 Exactly one object was grasped => success (continue lifting the object and go to drop off)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_OKAY.value]),
        ))

    # 3b.4 The grasp success estimator module is inactive => directly continue lifting the object and go to drop off
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
        ))

    # 3b.5 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(
        ha.TimeSwitch('EstimationMassMeasurement',
                      target_cm_okay,
                      duration=success_estimator_timeout))

    # 3b.6 There is no special switch for unknown error response (estimator signals ESTIMATION_RESULT_UNKNOWN_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.

    # 4. After estimation measurement control modes.
    extra_failure_cms = set()
    if target_cm_estimation_no_object != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_no_object)
    if target_cm_estimation_too_many != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_too_many)

    for cm in extra_failure_cms:
        if cm.startswith('failure_rerun'):
            # 4.1 Failure control mode representing grasping failure, which might be corrected by re-running the plan.
            control_sequence.append(ha.GravityCompensationMode(name=cm))
        if cm.startswith('failure_replan'):
            # 4.2 Failure control mode representing grasping failure, which can't be corrected and requires to re-plan.
            control_sequence.append(ha.GravityCompensationMode(name=cm))

    # 4.3 Success control mode. Lift hand even further
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(dir_up2,
                                             controller_name='GoUpHTransform',
                                             name=target_cm_okay,
                                             goal_is_relative='1',
                                             reference_frame="world"))

    # 4.3b Switch when joint configuration is reached
    control_sequence.append(
        ha.FramePoseSwitch(target_cm_okay,
                           'GoDropOff',
                           controller='GoUpHTransform',
                           epsilon='0.01',
                           goal_is_relative='1',
                           reference_frame="world"))

    # 5. Go to dropOFF location
    control_sequence.append(
        ha.JointControlMode(drop_off_config,
                            controller_name='GoToDropJointConfig',
                            name='GoDropOff'))

    # 5.b  Switch when joint is reached
    control_sequence.append(
        ha.JointConfigurationSwitch('GoDropOff',
                                    'finished',
                                    controller='GoToDropJointConfig',
                                    epsilon=str(math.radians(7.))))

    # 6. Block joints to finish motion and hold object in air
    control_sequence.append(ha.BlockJointControlMode(name='finished'))

    return control_sequence