def loadDocumentsFromFile(self, knowledgeFilePath): converter = TextConverter( remove_numeric_tables=False, valid_languages=["en"]) processor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="passage", split_length=1, split_respect_sentence_boundary=False, split_overlap=0 ) loadedFile = converter.convert(knowledgeFilePath) documents = processor.process(loadedFile) for i in range(0, len(documents)): docMetadata = documents[i]['meta'] docMetadata['name'] = knowledgeFilePath docMetadata['doucmentID'] = knowledgeFilePath \ + str(docMetadata['_split_id']) self.document_store.write_documents(documents) backagain = self.document_store.get_all_documents() # for i in range(0,len(backagain)): # print(i) # print(":\n") # print(backagain[i]) # print("---------------") print("Number of documents loaded", end=": ") print(self.document_store.get_document_count())
def test_preprocess_word_split(): document = {"text": TEXT} preprocessor = PreProcessor(split_length=10, split_stride=0, split_by="word", split_respect_sentence_boundary=False) documents = preprocessor.process(document) assert len(documents) == 11 preprocessor = PreProcessor(split_length=15, split_stride=0, split_by="word", split_respect_sentence_boundary=True) documents = preprocessor.process(document) for i, doc in enumerate(documents): if i == 0: assert len(doc["text"].split(" ")) == 14 assert len(doc["text"].split(" ")) <= 15 or doc["text"].startswith( "This is to trick") assert len(documents) == 8 preprocessor = PreProcessor(split_length=40, split_stride=10, split_by="word", split_respect_sentence_boundary=True) documents = preprocessor.process(document) assert len(documents) == 5
def test_clean_header_footer(): converter = PDFToTextConverter() document = converter.convert(file_path=Path("samples/pdf/sample_pdf_2.pdf")) # file contains header/footer preprocessor = PreProcessor(clean_header_footer=True, split_by=None) documents = preprocessor.process(document) assert len(documents) == 1 assert "This is a header." not in documents[0]["text"] assert "footer" not in documents[0]["text"]
def upload_file_to_document_store( file: UploadFile = File(...), remove_numeric_tables: Optional[bool] = Form(REMOVE_NUMERIC_TABLES), remove_whitespace: Optional[bool] = Form(REMOVE_WHITESPACE), remove_empty_lines: Optional[bool] = Form(REMOVE_EMPTY_LINES), remove_header_footer: Optional[bool] = Form(REMOVE_HEADER_FOOTER), valid_languages: Optional[List[str]] = Form(VALID_LANGUAGES), split_by: Optional[str] = Form(SPLIT_BY), split_length: Optional[int] = Form(SPLIT_LENGTH), split_overlap: Optional[int] = Form(SPLIT_OVERLAP), split_respect_sentence_boundary: Optional[bool] = Form( SPLIT_RESPECT_SENTENCE_BOUNDARY), ): try: file_path = Path( FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{file.filename}" with file_path.open("wb") as buffer: shutil.copyfileobj(file.file, buffer) if file.filename.split(".")[-1].lower() == "pdf": pdf_converter = PDFToTextConverter( remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages) document = pdf_converter.convert(file_path) elif file.filename.split(".")[-1].lower() == "txt": txt_converter = TextConverter( remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages, ) document = txt_converter.convert(file_path) else: raise HTTPException( status_code=415, detail=f"Only .pdf and .txt file formats are supported.") document = {TEXT_FIELD_NAME: document["text"], "name": file.filename} preprocessor = PreProcessor( clean_whitespace=remove_whitespace, clean_header_footer=remove_header_footer, clean_empty_lines=remove_empty_lines, split_by=split_by, split_length=split_length, split_overlap=split_overlap, split_respect_sentence_boundary=split_respect_sentence_boundary, ) documents = preprocessor.process(document) document_store.write_documents(documents) return "File upload was successful." finally: file.file.close()
def upload_file( model_id: str = Form(...), file: UploadFile = File(...), remove_numeric_tables: Optional[bool] = Form(REMOVE_NUMERIC_TABLES)): print("uploading file") if model_id not in MODELS: raise HTTPException(status_code=400, detail="Invalid model id") try: file_path = Path( FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{file.filename}" with file_path.open("wb") as buffer: shutil.copyfileobj(file.file, buffer) if file.filename.split(".")[-1].lower() == "pdf": pdf_converter = PDFToTextConverter( remove_numeric_tables=remove_numeric_tables, ) document = pdf_converter.convert(file_path) elif file.filename.split(".")[-1].lower() == "txt": txt_converter = TextConverter( remove_numeric_tables=remove_numeric_tables) document = txt_converter.convert(file_path) else: raise HTTPException( status_code=415, detail=f"Only .pdf and .txt file formats are supported.") processor = PreProcessor(clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="word", split_length=200, split_respect_sentence_boundary=True) docs = processor.process(document) # Add name field to documents for doc in docs: doc['name'] = file.filename doc_store = MODELS[model_id].finder.retriever.document_store doc_store.write_documents(docs) return docs finally: file.file.close()
def test_eval_data_splitting(document_store): # splitting by word document_store.delete_all_documents(index="test_eval_document") document_store.delete_all_documents(index="test_feedback") preprocessor = PreProcessor(clean_empty_lines=False, clean_whitespace=False, clean_header_footer=False, split_by="word", split_length=4, split_overlap=0, split_respect_sentence_boundary=False) document_store.add_eval_data(filename="samples/squad/tiny.json", doc_index="test_eval_document", label_index="test_feedback", preprocessor=preprocessor) labels = document_store.get_all_labels_aggregated(index="test_feedback") docs = document_store.get_all_documents(index="test_eval_document") assert len(docs) == 5 assert len(set(labels[0].multiple_document_ids)) == 2 # splitting by passage document_store.delete_all_documents(index="test_eval_document") document_store.delete_all_documents(index="test_feedback") preprocessor = PreProcessor(clean_empty_lines=False, clean_whitespace=False, clean_header_footer=False, split_by="passage", split_length=1, split_overlap=0, split_respect_sentence_boundary=False) document_store.add_eval_data(filename="samples/squad/tiny_passages.json", doc_index="test_eval_document", label_index="test_feedback", preprocessor=preprocessor) docs = document_store.get_all_documents(index="test_eval_document") assert len(docs) == 2 assert len(docs[1].text) == 56
def file_upload(file): try: file_path = '/tmp/' + file.name + '_tmp' with open(file_path, "wb") as buffer: buffer.write(file.read()) if file.filename.split(".")[-1].lower() == "pdf": pdf_converter = PDFToTextConverter( remove_numeric_tables=True, valid_languages=["en"] ) document = pdf_converter.convert(file_path) elif file.filename.split(".")[-1].lower() == "txt": txt_converter = TextConverter( remove_numeric_tables=True, valid_languages=["en"], ) document = txt_converter.convert(file_path) else: raise HTTPException(status_code=415, detail=f"Only .pdf and .txt file formats are supported.") document = {TEXT_FIELD_NAME: document["text"], "name": file.filename} preprocessor = PreProcessor( clean_whitespace=REMOVE_WHITESPACE, clean_header_footer=REMOVE_HEADER_FOOTER, clean_empty_lines=REMOVE_EMPTY_LINES, split_by=SPLIT_BY, split_length=SPLIT_LENGTH, split_respect_sentence_boundary=SPLIT_RESPECT_SENTENCE_BOUNDARY, ) documents = preprocessor.process(document) # write the docs to the DB. document_store.write_documents(documents) return document_store finally: os.remove(file_path) buffer.close()
def test_preprocess_passage_split(): document = {"text": TEXT} preprocessor = PreProcessor(split_length=1, split_overlap=0, split_by="passage", split_respect_sentence_boundary=False) documents = preprocessor.process(document) assert len(documents) == 3 preprocessor = PreProcessor(split_length=2, split_overlap=0, split_by="passage", split_respect_sentence_boundary=False) documents = preprocessor.process(document) assert len(documents) == 2
def test_preprocess_sentence_split(): document = {"text": TEXT} preprocessor = PreProcessor(split_length=1, split_overlap=0, split_by="sentence") documents = preprocessor.process(document) assert len(documents) == 15 preprocessor = PreProcessor( split_length=10, split_overlap=0, split_by="sentence" ) documents = preprocessor.process(document) assert len(documents) == 2
def test_preprocess_passage_split(): document = {"text": TEXT} preprocessor = PreProcessor(split_length=1, split_stride=0, split_by="passage") documents = preprocessor.process(document) assert len(documents) == 3 preprocessor = PreProcessor(split_length=2, split_stride=0, split_by="passage") documents = preprocessor.process(document) assert len(documents) == 2
def test_eval_data_split_passage(document_store): # splitting by passage preprocessor = PreProcessor(clean_empty_lines=False, clean_whitespace=False, clean_header_footer=False, split_by="passage", split_length=1, split_overlap=0, split_respect_sentence_boundary=False) document_store.add_eval_data( filename="samples/squad/tiny_passages.json", doc_index="haystack_test_eval_document", label_index="haystack_test_feedback", preprocessor=preprocessor, ) docs = document_store.get_all_documents( index="haystack_test_eval_document") assert len(docs) == 2 assert len(docs[1].text) == 56
def _extract_docs_and_labels_from_dict(document_dict: Dict, preprocessor: PreProcessor = None): docs = [] labels = [] # get all extra fields from document level (e.g. title) meta_doc = { k: v for k, v in document_dict.items() if k not in ("paragraphs", "title") } for paragraph in document_dict["paragraphs"]: ## Create Metadata cur_meta = {"name": document_dict.get("title", None)} # all other fields from paragraph level meta_paragraph = { k: v for k, v in paragraph.items() if k not in ("qas", "context") } cur_meta.update(meta_paragraph) # meta from parent document cur_meta.update(meta_doc) ## Create Document cur_doc = Document(text=paragraph["context"], meta=cur_meta) if preprocessor is not None: splits_dicts = preprocessor.process(cur_doc.to_dict()) # we need to pull in _split_id into the document id for unique reference in labels # todo: PreProcessor should work on Documents instead of dicts splits = [] offset = 0 for d in splits_dicts: id = f"{d['id']}-{d['meta']['_split_id']}" d["meta"]["_split_offset"] = offset offset += len(d["text"]) # offset correction based on splitting method if preprocessor.split_by == "word": offset += 1 elif preprocessor.split_by == "passage": offset += 2 else: raise NotImplementedError mydoc = Document(text=d["text"], id=id, meta=d["meta"]) splits.append(mydoc) else: splits = [cur_doc] docs.extend(splits) ## Assign Labels to corresponding documents for qa in paragraph["qas"]: if not qa["is_impossible"]: for answer in qa["answers"]: ans = answer["text"] ans_position = cur_doc.text[ answer["answer_start"]:answer["answer_start"] + len(ans)] if ans != ans_position: logger.warning( f"Answer Text and Answer position mismatch. Skipping Answer" ) break # find corresponding document or split if len(splits) == 1: cur_id = splits[0].id cur_ans_start = answer["answer_start"] else: for s in splits: # If answer start offset is contained in passage we assign the label to that passage if (answer["answer_start"] >= s.meta["_split_offset"]) and ( answer["answer_start"] < (s.meta["_split_offset"] + len(s.text))): cur_id = s.id cur_ans_start = answer[ "answer_start"] - s.meta["_split_offset"] # If a document is splitting an answer we add the whole answer text to the document if s.text[cur_ans_start:cur_ans_start + len(ans)] != ans: s.text = s.text[:cur_ans_start] + ans break label = Label( question=qa["question"], answer=ans, is_correct_answer=True, is_correct_document=True, document_id=cur_id, offset_start_in_doc=cur_ans_start, no_answer=qa["is_impossible"], origin="gold_label", ) labels.append(label) else: # for no_answer we need to assign each split as not fitting to the question for s in splits: label = Label( question=qa["question"], answer="", is_correct_answer=True, is_correct_document=True, document_id=s.id, offset_start_in_doc=0, no_answer=qa["is_impossible"], origin="gold_label", ) labels.append(label) return docs, labels
def tutorial8_preprocessing(): # This fetches some sample files to work with doc_dir = "data/preprocessing_tutorial" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/preprocessing_tutorial.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) """ ## Converters Haystack's converter classes are designed to help you turn files on your computer into the documents that can be processed by the Haystack pipeline. There are file converters for txt, pdf, docx files as well as a converter that is powered by Apache Tika. """ # Here are some examples of how you would use file converters converter = TextConverter(remove_numeric_tables=True, valid_languages=["en"]) doc_txt = converter.convert( file_path="data/preprocessing_tutorial/classics.txt", meta=None) converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) doc_pdf = converter.convert( file_path="data/preprocessing_tutorial/bert.pdf", meta=None) converter = DocxToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) doc_docx = converter.convert( file_path="data/preprocessing_tutorial/heavy_metal.docx", meta=None) # Haystack also has a convenience function that will automatically apply the right converter to each file in a directory. all_docs = convert_files_to_dicts(dir_path="data/preprocessing_tutorial") """ ## PreProcessor The PreProcessor class is designed to help you clean text and split text into sensible units. File splitting can have a very significant impact on the system's performance. Have a look at the [Preprocessing](https://haystack.deepset.ai/docs/latest/preprocessingmd) and [Optimization](https://haystack.deepset.ai/docs/latest/optimizationmd) pages on our website for more details. """ # This is a default usage of the PreProcessor. # Here, it performs cleaning of consecutive whitespaces # and splits a single large document into smaller documents. # Each document is up to 1000 words long and document breaks cannot fall in the middle of sentences # Note how the single document passed into the document gets split into 5 smaller documents preprocessor = PreProcessor(clean_empty_lines=True, clean_whitespace=True, clean_header_footer=False, split_by="word", split_length=1000, split_respect_sentence_boundary=True) docs_default = preprocessor.process(doc_txt) print(f"n_docs_input: 1\nn_docs_output: {len(docs_default)}") """ ## Cleaning - `clean_empty_lines` will normalize 3 or more consecutive empty lines to be just a two empty lines - `clean_whitespace` will remove any whitespace at the beginning or end of each line in the text - `clean_header_footer` will remove any long header or footer texts that are repeated on each page ## Splitting By default, the PreProcessor will respect sentence boundaries, meaning that documents will not start or end midway through a sentence. This will help reduce the possibility of answer phrases being split between two documents. This feature can be turned off by setting `split_respect_sentence_boundary=False`. """ # Not respecting sentence boundary vs respecting sentence boundary preprocessor_nrsb = PreProcessor(split_respect_sentence_boundary=False) docs_nrsb = preprocessor_nrsb.process(doc_txt) print("RESPECTING SENTENCE BOUNDARY") end_text = docs_default[0]["text"][-50:] print("End of document: \"..." + end_text + "\"") print() print("NOT RESPECTING SENTENCE BOUNDARY") end_text_nrsb = docs_nrsb[0]["text"][-50:] print("End of document: \"..." + end_text_nrsb + "\"") """ A commonly used strategy to split long documents, especially in the field of Question Answering, is the sliding window approach. If `split_length=10` and `split_overlap=3`, your documents will look like this: - doc1 = words[0:10] - doc2 = words[7:17] - doc3 = words[14:24] - ... You can use this strategy by following the code below. """ # Sliding window approach preprocessor_sliding_window = PreProcessor( split_overlap=3, split_length=10, split_respect_sentence_boundary=False) docs_sliding_window = preprocessor_sliding_window.process(doc_txt) doc1 = docs_sliding_window[0]["text"][:200] doc2 = docs_sliding_window[1]["text"][:100] doc3 = docs_sliding_window[2]["text"][:100] print("Document 1: \"" + doc1 + "...\"") print("Document 2: \"" + doc2 + "...\"") print("Document 3: \"" + doc3 + "...\"")
#doc_pdf = converter.convert(file_path="data/preprocessing_tutorial/bert.pdf", meta=None) #converter = DocxToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) #doc_docx = converter.convert(file_path="data/preprocessing_tutorial/heavy_metal.docx", meta=None) # in our case: converter = TextConverter(remove_numeric_tables=True, valid_languages=["de"]) doc_txt = converter.convert(file_path="./data/geschichte_19._Jahrhundert.txt", meta=None) # TODO: Scraping is not correct yet. E.g. Code civil is incorrect (text after it is left out) # This is a default usage of the PreProcessor. # Here, it performs cleaning of consecutive whitespaces # and splits a single large document into smaller documents. # Each document is up to 1000 words long and document breaks cannot fall in the middle of sentences # Note how the single document passed into the document gets split into 5 smaller documents preprocessor = PreProcessor(clean_empty_lines=True, clean_whitespace=True, clean_header_footer=False, split_by="word", split_length=100, split_respect_sentence_boundary=True) # clean_empty_lines will normalize 3 or more consecutive empty lines to be just a two empty lines # clean_whitespace will remove any whitespace at the beginning or end of each line in the text # clean_header_footer will remove any long header or footer texts that are repeated on each page docs_default = preprocessor.process(doc_txt) print(f"n_docs_input: 1\nn_docs_output: {len(docs_default)}") # EOF
def _extract_docs_and_labels_from_dict(document_dict: Dict, preprocessor: PreProcessor = None, open_domain: bool = False): """Set open_domain to True if you are trying to load open_domain labels (i.e. labels without doc id or start idx)""" docs = [] labels = [] problematic_ids = [] # get all extra fields from document level (e.g. title) meta_doc = { k: v for k, v in document_dict.items() if k not in ("paragraphs", "title") } for paragraph in document_dict["paragraphs"]: ## Create Metadata cur_meta = {"name": document_dict.get("title", None)} # all other fields from paragraph level meta_paragraph = { k: v for k, v in paragraph.items() if k not in ("qas", "context") } cur_meta.update(meta_paragraph) # meta from parent document cur_meta.update(meta_doc) ## Create Document cur_doc = Document(text=paragraph["context"], meta=cur_meta) if preprocessor is not None: splits_dicts = preprocessor.process(cur_doc.to_dict()) # we need to pull in _split_id into the document id for unique reference in labels # todo: PreProcessor should work on Documents instead of dicts splits: List[Document] = [] offset = 0 for d in splits_dicts: id = f"{d['id']}-{d['meta']['_split_id']}" d["meta"]["_split_offset"] = offset offset += len(d["text"]) # offset correction based on splitting method if preprocessor.split_by == "word": offset += 1 elif preprocessor.split_by == "passage": offset += 2 else: raise NotImplementedError mydoc = Document(text=d["text"], id=id, meta=d["meta"]) splits.append(mydoc) else: splits = [cur_doc] docs.extend(splits) ## Assign Labels to corresponding documents for qa in paragraph["qas"]: if not qa.get("is_impossible", False): for answer in qa["answers"]: ans = answer["text"] cur_ans_start = None # TODO The following block of code means that answer_start is never calculated # and cur_id is always None for open_domain # This can be rewritten so that this function could try to calculate offsets # and populate id in open_domain mode if open_domain: cur_ans_start = answer.get("answer_start", 0) cur_id = '0' else: ans_position = cur_doc.text[ answer["answer_start"]:answer["answer_start"] + len(ans)] if ans != ans_position: # do not use answer problematic_ids.append(qa.get("id", "missing")) break # find corresponding document or split if len(splits) == 1: cur_id = splits[0].id cur_ans_start = answer["answer_start"] else: for s in splits: # If answer start offset is contained in passage we assign the label to that passage if (answer["answer_start"] >= s.meta["_split_offset"]) and ( answer["answer_start"] < (s.meta["_split_offset"] + len(s.text))): cur_id = s.id cur_ans_start = answer[ "answer_start"] - s.meta[ "_split_offset"] # If a document is splitting an answer we add the whole answer text to the document if s.text[cur_ans_start:cur_ans_start + len(ans)] != ans: s.text = s.text[:cur_ans_start] + ans break label = Label( question=qa["question"], answer=ans, is_correct_answer=True, is_correct_document=True, document_id=cur_id, offset_start_in_doc=cur_ans_start, no_answer=qa.get("is_impossible", False), origin="gold_label", ) labels.append(label) else: # for no_answer we need to assign each split as not fitting to the question for s in splits: label = Label( question=qa["question"], answer="", is_correct_answer=True, is_correct_document=True, document_id=s.id, offset_start_in_doc=0, no_answer=qa.get("is_impossible", False), origin="gold_label", ) labels.append(label) return docs, labels, problematic_ids
parser.add_argument("--num_hard_negative_ctxs", dest="num_hard_negative_ctxs", help="Number of hard negative contexts to use", metavar="num_hard_negative_ctxs", default=30) parser.add_argument( "--split_dataset", dest="split_dataset", action="store_true", help="Whether to split the created dataset or not (default: False)", ) args = parser.parse_args() preprocessor = PreProcessor(split_length=100, split_overlap=0, clean_empty_lines=False, clean_whitespace=False) squad_input_filename = Path(args.squad_input_filename) dpr_output_filename = Path(args.dpr_output_filename) num_hard_negative_ctxs = args.num_hard_negative_ctxs split_dataset = args.split_dataset retriever_dpr_config = { "use_gpu": True, } store_dpr_config = { "embedding_field": "embedding", "embedding_dim": 768, } retriever_bm25_config: dict = {}
# remove linebreaks df['summary'] = df['summary'].astype(str).apply(clean.remove_linebreak) df['title'] = df['title'].astype(str).apply(clean.remove_linebreak) # Dataframe to dict for haystack all_dicts = df[['title', 'summary']].rename(columns={ 'title': 'name', 'summary': 'text' }).to_dict(orient='records') # %% # clean data # preprocessing from haystack preprocessor = PreProcessor(clean_empty_lines=True, clean_whitespace=True, clean_header_footer=False, split_by="word", split_length=100, split_respect_sentence_boundary=True, split_overlap=10) nested_docs = [preprocessor.process(d) for d in all_dicts] docs = [d for x in nested_docs for d in x] # %% # start FAISS document store and store docs document_store = FAISSDocumentStore(faiss_index_factory_str="Flat") document_store.write_documents(docs) # %% # initialise storage from haystack.retriever.dense import DensePassageRetriever retriever = DensePassageRetriever(
The PreProcessor class is designed to help you clean text and split text into sensible units. File splitting can have a very significant impact on the system's performance. Have a look at the [Preprocessing](https://haystack.deepset.ai/docs/latest/preprocessingmd) and [Optimization](https://haystack.deepset.ai/docs/latest/optimizationmd) pages on our website for more details. """ # This is a default usage of the PreProcessor. # Here, it performs cleaning of consecutive whitespaces # and splits a single large document into smaller documents. # Each document is up to 1000 words long and document breaks cannot fall in the middle of sentences # Note how the single document passed into the document gets split into 5 smaller documents preprocessor = PreProcessor(clean_empty_lines=True, clean_whitespace=True, clean_header_footer=False, split_by="word", split_length=1000, split_respect_sentence_boundary=True) docs_default = preprocessor.process(doc_txt) print(f"n_docs_input: 1\nn_docs_output: {len(docs_default)}") """ ## Cleaning - `clean_empty_lines` will normalize 3 or more consecutive empty lines to be just a two empty lines - `clean_whitespace` will remove any whitespace at the beginning or end of each line in the text - `clean_header_footer` will remove any long header or footer texts that are repeated on each page ## Splitting By default, the PreProcessor will respect sentence boundaries, meaning that documents will not start or end midway through a sentence. This will help reduce the possibility of answer phrases being split between two documents.
dest="num_hard_negative_ctxs", help="Number of hard negative contexts to use", metavar="num_hard_negative_ctxs", default=30) parser.add_argument( "--split_dataset", dest="split_dataset", action="store_true", help="Whether to split the created dataset or not (default: False)", ) args = parser.parse_args() preprocessor = PreProcessor(split_length=100, split_overlap=0, clean_empty_lines=False, split_respect_sentence_boundary=False, clean_whitespace=False) squad_input_filename = Path(args.squad_input_filename) dpr_output_filename = Path(args.dpr_output_filename) num_hard_negative_ctxs = args.num_hard_negative_ctxs split_dataset = args.split_dataset retriever_dpr_config = { "use_gpu": True, } store_dpr_config = { "embedding_field": "embedding", "embedding_dim": 768, }