Exemple #1
0
    def _add_automated_vehicles(self):
        """Replace a portion of vehicles with automated vehicles."""
        penetration = self.env_params.additional_params["rl_penetration"]

        # Sort the initial vehicles by their positions.
        sorted_vehicles = sorted(self.k.vehicle.get_ids(),
                                 key=lambda x: self.k.vehicle.get_x_by_id(x))

        # Replace every nth vehicle with an RL vehicle.
        for lane in range(self._num_lanes):
            sorted_vehicles_lane = [
                veh for veh in sorted_vehicles if get_lane(self, veh) == lane
            ]

            if isinstance(self.k.network.network, I210SubNetwork):
                # Choose a random starting position to allow for stochasticity.
                i = random.randint(0, int(1 / penetration) - 1)
            else:
                i = 0

            for veh_id in sorted_vehicles_lane:
                self.k.vehicle.set_vehicle_type(veh_id, "human")

                i += 1
                if i % int(1 / penetration) == 0:
                    # Don't add vehicles past the control range.
                    pos = self.k.vehicle.get_x_by_id(veh_id)
                    if pos < self._control_range[1]:
                        self.k.vehicle.set_vehicle_type(veh_id, "rl")
Exemple #2
0
    def _add_automated_vehicles(self):
        """Replace a portion of vehicles with automated vehicles."""
        penetration = self.env_params.additional_params["rl_penetration"]

        # Sort the initial vehicles by their positions.
        sorted_vehicles = sorted(self.k.vehicle.get_ids(),
                                 key=lambda x: self.k.vehicle.get_x_by_id(x))

        # Replace every nth vehicle with an RL vehicle.
        for lane in range(self._num_lanes):
            sorted_vehicles_lane = [
                veh for veh in sorted_vehicles if get_lane(self, veh) == lane
            ]

            for i, veh_id in enumerate(sorted_vehicles_lane):
                if (i + 1) % int(1 / penetration) == 0:
                    # Don't add vehicles past the control range.
                    pos = self.k.vehicle.get_x_by_id(veh_id)
                    if pos < self._control_range[1]:
                        self.k.vehicle.set_vehicle_type(veh_id, "rl")
Exemple #3
0
    def compute_reward(self, rl_actions, **kwargs):
        """See class definition."""
        # In case no vehicles were available in the current step, pass an empty
        # reward dict.
        if rl_actions is None:
            return {}

        reward = {}

        # Collect the names of the vehicles within the control range.
        control_min = self._control_range[0]
        control_max = self._control_range[1]
        veh_ids = [
            veh_id for veh_id in self.k.vehicle.get_ids()
            if control_min <= self.k.vehicle.get_x_by_id(veh_id) <= control_max
        ]

        for lane in range(self._num_lanes):
            # Collect the names of all vehicles on the given lane, while
            # taking into account edges with an extra lane.
            veh_ids_lane = [v for v in veh_ids if get_lane(self, v) == lane]

            # Collect the names of the RL vehicles on the lane.
            rl_ids = [veh for veh in self.rl_ids() if veh in veh_ids_lane]

            # Collect the actions that just correspond to this lane.
            rl_actions_lane = {
                key: rl_actions[key]
                for key in rl_actions.keys() if key in rl_ids
            }

            # Compute the reward for a given lane.
            reward["lane_{}".format(lane)] = self._compute_reward_util(
                rl_actions=rl_actions_lane,
                veh_ids=veh_ids_lane,
                rl_ids=rl_ids,
                **kwargs)

        return reward
Exemple #4
0
    def additional_command(self):
        """See parent class.

        Here, the operations are done at a per-lane level.
        """
        for lane in range(self._num_lanes):
            # Collect the names of the RL vehicles on the given lane, while
            # tacking into account edges with an extra lane.
            rl_ids = [
                veh for veh in self.k.vehicle.get_rl_ids()
                if get_lane(self, veh) == lane
            ]

            # Update the RL lists.
            self.rl_queue[lane], self.rl_veh[lane], self.removed_veh = \
                update_rl_veh(
                    self,
                    rl_queue=self.rl_queue[lane],
                    rl_veh=self.rl_veh[lane],
                    removed_veh=self.removed_veh,
                    control_range=self._control_range,
                    num_rl=self.num_rl,
                    rl_ids=reversed(sorted(
                        rl_ids, key=self.k.vehicle.get_x_by_id)),
                )

            # Specify actions for the uncontrolled RL vehicles based on human-
            # driven dynamics.
            for veh_id in list(set(rl_ids) - set(self.rl_veh[lane])):
                self._rl_controller.veh_id = veh_id
                acceleration = self._rl_controller.get_action(self)
                self.k.vehicle.apply_acceleration(veh_id, acceleration)

        # Specify observed vehicles.
        for veh_id in self.leader + self.follower:
            self.k.vehicle.set_observed(veh_id)