Exemple #1
0
    def _init(self, model_name):
        if model_name is not None:
            self.model_definition = model_name
        else:
            self.model_definition = self.config["model"]

        if self.model_definition:
            self.feature_mode = self.model_definition.split('_')[0]
        else:
            self.feature_mode = None

        self.max_files_per_class = self.config.get(
            "training/max_files_per_class", None)

        self.dataset = None

        if self.experiment_name:
            self._model_dir = os.path.join(
                os.path.expanduser(self.config["paths/model_dir"]),
                self.experiment_name)
            self._experiment_config_path = os.path.join(
                self._model_dir, self.config['experiment/config_path'])

            # if these don't exist, we're not actually running anything
            if self.model_definition and self.feature_mode:
                utils.create_directory(self._model_dir)
Exemple #2
0
    def _init(self, model_name):
        if model_name is not None:
            self.model_definition = model_name
        else:
            self.model_definition = self.config["model"]

        if self.model_definition:
            self.feature_mode = self.model_definition.split('_')[0]
        else:
            self.feature_mode = None

        self.max_files_per_class = self.config.get(
            "training/max_files_per_class", None)

        self.dataset = None

        if self.experiment_name:
            self._model_dir = os.path.join(
                os.path.expanduser(self.config["paths/model_dir"]),
                self.experiment_name)
            self._experiment_config_path = os.path.join(
                self._model_dir, self.config['experiment/config_path'])

            # if these don't exist, we're not actually running anything
            if self.model_definition and self.feature_mode:
                utils.create_directory(self._model_dir)
Exemple #3
0
    def _init_cross_validation(self, test_set):
        self._cv_model_dir = os.path.join(self._model_dir, test_set)
        self._params_dir = os.path.join(self._cv_model_dir,
                                        self.config["experiment/params_dir"])
        self._training_loss_path = os.path.join(
            self._cv_model_dir, self.config['experiment/training_loss'])

        if os.path.exists(self._cv_model_dir):
            logger.warning("Cleaning old experiment: {}".format(
                self._cv_model_dir))
        utils.create_directory(
            self._cv_model_dir,
            # aka if DO the clean, recreate.
            recreate=(not self.skip_cleaning))
        utils.create_directory(self._params_dir)
Exemple #4
0
    def _init_cross_validation(self, test_set):
        self._cv_model_dir = os.path.join(self._model_dir, test_set)
        self._params_dir = os.path.join(
            self._cv_model_dir,
            self.config["experiment/params_dir"])
        self._training_loss_path = os.path.join(
            self._cv_model_dir, self.config['experiment/training_loss'])

        if os.path.exists(self._cv_model_dir):
            logger.warning("Cleaning old experiment: {}".format(
                self._cv_model_dir))
        utils.create_directory(self._cv_model_dir,
                               # aka if DO the clean, recreate.
                               recreate=(not self.skip_cleaning))
        utils.create_directory(self._params_dir)
Exemple #5
0
def test_create_directory(workspace):
    dname = os.path.join(workspace, "oh_hello")
    assert not os.path.exists(dname)
    assert utils.create_directory(dname)
    assert utils.create_directory(dname)
def test_create_directory(workspace):
    dname = os.path.join(workspace, "oh_hello")
    assert not os.path.exists(dname)
    assert utils.create_directory(dname)
    assert utils.create_directory(dname)
Exemple #7
0
def cqt_from_dataset(dataset, write_dir,
                     cqt_params=None, audio_params=None, harmonic_params=None,
                     num_cpus=-1, verbose=50, skip_existing=True):
    """Compute CQT representation over audio files referenced by
    a dataframe, and return a new dataframe also containing a column
    referencing the cqt files.

    Parameters
    ----------
    dataset : hcnn.data.Dataset
        Dataset containing references to the audio files.

    write_dir : str
        Directory to write to.

    cqt_params : dict, default=None
        Parameters to use for CQT computation.

    audio_params : dict, default=None
        Parameters to use for loading the audio file.

    harmonic_params : dict, default=None
        Parameters to use on top of `cqt_params` for the harmonic cqt.

    num_cpus : int, default=-1
        Number of parallel threads to use for computation.

    verbose : int
        Passed to cqt_many; for "Parallel"

    skip_existing : bool
        If files exist, don't try to extract them.

    Returns
    -------
    updated_dataset : data.dataset.Dataset
        Dataset updated with parameters to the outputed features.
    """
    utils.create_directory(write_dir)

    ####
    ## TODO IF skip_existing, try to reload the dataset with features
    ## And modify it instead of replacing it.

    def features_path_for_audio(audio_path):
        return os.path.join(write_dir,
                            utils.filebase(audio_path) + ".npz")

    audio_paths = dataset.to_df()["audio_file"].tolist()
    cqt_paths = [features_path_for_audio(x) for x in audio_paths]

    failed_files = cqt_many(audio_paths, cqt_paths, cqt_params, audio_params,
                            harmonic_params, num_cpus, verbose, skip_existing)
    logger.warning("{} files failed to extract.".format(len(failed_files)))

    feats_df = dataset.to_df()
    feats_df['cqt'] = pd.Series([None] * len(feats_df), index=feats_df.index)
    # Update the features field if the file was successfully created.
    for i, path in enumerate(cqt_paths):
        if os.path.exists(path):
            feats_df.loc[feats_df.index[i], "cqt"] = path
        else:
            logger.warning("CQT Not successfully created: {}".format(path))

    return DS.Dataset(feats_df, dataset.split)