def test_plot(hdf5_filename): #extract center data from HDF5 c_feat,c_data = get_hdf5_data(hdf5_filename,fields=['center']) #compute speed features s_feat,s_data = speed_feature_extraction(c_data) print s_feat print s_data #compute directional features d_feat,d_data = direction_feature_extraction(c_data) print d_feat print d_data #plot data import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, aspect='equal') rank = npy.argsort(d_data[:,0]) for i,r in enumerate(rank): xy = c_data[r]['center'] p_length = s_data[r,0] x0 = xy[0,0] y0 = xy[0,1] offset_x = s_data[r,6]*10000 # offset_x = p_length*10 # offset_x = s_data[r,3]*100 # offset_x = d_data[r,3]*10 offset_y = d_data[r,3]*10 plt.plot(xy[:,0]-x0+offset_x,xy[:,1]-y0+offset_y) fxy = filter(xy,sigma=1.) plt.plot(fxy[:,0]-x0+offset_x,fxy[:,1]-y0+offset_y) plt.plot(offset_x,offset_y,'+k')
def test_measures(): import matplotlib.pyplot as plt from hdf5_read import get_hdf5_data from measurement import speed_feature_extraction hdf5_filename = '../test/data/test_rev.hdf5' c_feat,c_data = get_hdf5_data(hdf5_filename,fields=['center']) #compute speed features feat,data = speed_feature_extraction(c_data) print feat plt.scatter(data[:,1],data[:,3]) plt.xlabel('avg speed') plt.ylabel('hull speed') plt.draw() plt.figure() plt.hist(data[:,1:4]) plt.legend(['avg','mrdo','hull speed']) plt.show()