Exemple #1
0
    def __next__(self):
        if self._current_index < self.number_of_steps:
            number_of_threads_in_current_step = min(
                self.number_of_threads,
                self.number_of_steps - self._current_index)

            with concurrent.futures.ThreadPoolExecutor() as executor:
                threads = [
                    executor.submit(
                        MultiThreadTimestampIterator.get_data_from_file,
                        self.data, self.current_dataset + i)
                    for i in range(number_of_threads_in_current_step)
                ]
            data_from_multiple_files = ()
            for thread in threads:
                data_from_multiple_files += (thread.result(), )
            stacked_data_from_multiple_files = np.hstack(
                data_from_multiple_files)
            selection = self.__get_selection(number_of_threads_in_current_step)
            data_chunk = DataChunk(data=stacked_data_from_multiple_files,
                                   selection=selection)

            self._current_index += number_of_threads_in_current_step
            self.current_dataset += number_of_threads_in_current_step

            del stacked_data_from_multiple_files
            return data_chunk

        raise StopIteration
 def __next__(self):
     """Return the next data chunk or raise a StopIteration exception if all chunks have been retrieved."""
     next_chunk = []
     # Determine the range of channels to be read
     start_index = self.current_fileindex
     stop_index = start_index + 1 #self.buffer_size
     if stop_index > self.data.get_number_of_files():
         stop_index = self.data.get_number_of_files()
     # Read the data from all current channels
     for i in range(start_index, stop_index):
         next_chunk.append(self.data.read_channel(i))  # Read a single HTK file with the data of one electrode
     next_chunk_size = len(next_chunk)
     # If didn't read any channels then return None, None
     if next_chunk_size == 0:
         raise StopIteration
     # If we had data, then determine the chunk location and convert the data to numpy, and return
     else:
         self.current_fileindex = stop_index
         next_chunk = np.asarray(next_chunk)
         if self.time_axis_first:
             next_chunk = np.swapaxes(next_chunk, 0, 1)     
         else:
             next_chunk_location = np.s_[start_index:stop_index, ...]
             
         if self.__has_bands:
             next_chunk_location = np.s_[:, start_index:stop_index, :]
         else:
             next_chunk_location = np.s_[:, start_index:stop_index]
             next_chunk = next_chunk[:,:,0]
         #print(next_chunk.shape, next_chunk_location)
         return DataChunk(next_chunk, next_chunk_location)
    def __next__(self):
        if self._current_index < self.number_of_steps:
            data_from_file = self.__get_timestamps()
            selection = self._get_selection()
            data_chunk = DataChunk(data=data_from_file, selection=selection)

            self._current_index += 1
            self.current_dataset += 1

            del data_from_file
            return data_chunk

        raise StopIteration
Exemple #4
0
 def __next__(self):
     """
     Return in each iteration the data from a single file
     """
     if self.__curr_index < len(channel_files):
         newfp = np.memmap(channel_files[self.__curr_index],
                           dtype='float64',
                           mode='r',
                           shape=(self.num_steps, ))
         curr_data = newfp[:]
         i = self.__curr_index
         self.__curr_index += 1
         del newfp
         return DataChunk(data=curr_data, selection=np.s_[:, i])
     else:
         raise StopIteration
Exemple #5
0
    def __next__(self):
        if self._current_index < self.number_of_steps:
            data_from_file = self.__get_data_from_file()
            selection = self._get_selection()
            data_chunk = DataChunk(data=data_from_file, selection=selection)

            self._current_index += 1
            self.current_file += 1

            if self.current_file >= self.number_of_files_in_single_dataset:
                self.current_dataset += 1
                self.current_file = 0

            del data_from_file
            return data_chunk

        raise StopIteration
Exemple #6
0
 def __next__(self):
     """
     Return in each iteration a fully occupied data chunk of self.chunk_shape values at a random
     location within the matrix. Chunks are non-overlapping. REMEMBER: h5py does not support all
     fancy indexing that numpy does so we need to make sure our selection can be
     handled by the backend.
     """
     if self.__chunks_created < self.num_chunks:
         data = np.random.rand(np.prod(self.chunk_shape)).reshape(
             self.chunk_shape)
         xmin = np.random.randint(0, int(
             self.shape[0] / self.chunk_shape[0]),
                                  1)[0] * self.chunk_shape[0]
         xmax = xmin + self.chunk_shape[0]
         ymin = np.random.randint(0, int(
             self.shape[1] / self.chunk_shape[1]),
                                  1)[0] * self.chunk_shape[1]
         ymax = ymin + self.chunk_shape[1]
         self.__chunks_created += 1
         return DataChunk(data=data, selection=np.s_[xmin:xmax, ymin:ymax])
     else:
         raise StopIteration
Exemple #7
0
    def __next__(self):
        """
        Return in each iteration a fully occupied data chunk of self.chunk_shape values at selected
        location within the data
        """

        if self.__chunks_created < self.chunk_count:

            chunk_i = self.__chunks_created
            chunk_index = self.chunk_index_array[chunk_i]
            tmin, xmin, ymin, zmin = chunk_index * self.chunk_shape
            tmax, xmax, ymax, zmax = chunk_index * self.chunk_shape + self.chunk_shape
            tmax, xmax, ymax, zmax = np.clip([tmax, xmax, ymax, zmax],
                                             np.zeros(len(self.shape),
                                                      dtype=int), self.shape)

            selection = np.s_[tmin:tmax, xmin:xmax, ymin:ymax, zmin:zmax]
            data = self.data[selection]
            self.__chunks_created += 1

            return DataChunk(data=data, selection=selection)
        else:
            raise StopIteration
Exemple #8
0
    def __next__(self):
        if self._current_index < self.number_of_steps:
            number_of_threads_in_current_step = min(
                self.number_of_threads,
                self.number_of_files_in_single_dataset - self.current_file)
            with concurrent.futures.ThreadPoolExecutor() as executor:
                threads = [
                    executor.submit(MultiThreadDataIterator.get_data_from_file,
                                    self.data, self.current_dataset,
                                    self.current_file + i)
                    for i in range(number_of_threads_in_current_step)
                ]
            data_from_multiple_files = ()
            for thread in threads:
                data_from_multiple_files += (thread.result(), )
            stacked_data_from_multiple_files = np.hstack(
                data_from_multiple_files)
            selection = self.get_selection(
                number_of_threads=number_of_threads_in_current_step,
                current_dataset=self.current_dataset,
                dataset_file_length=self.dataset_file_length,
                current_file=self.current_file,
                number_of_rows=self.number_of_rows)
            data_chunk = DataChunk(data=stacked_data_from_multiple_files,
                                   selection=selection)

            self._current_index += number_of_threads_in_current_step
            self.current_file += number_of_threads_in_current_step

            if self.current_file >= self.number_of_files_in_single_dataset:
                self.current_dataset += 1
                self.current_file = 0

            del stacked_data_from_multiple_files
            return data_chunk

        raise StopIteration
Exemple #9
0
 def test_datachunk_astype(self):
     obj = DataChunk(data=np.arange(3), selection=np.s_[0:3])
     newtype = np.dtype('int16')
     obj_astype = obj.astype(newtype)
     self.assertNotEqual(id(obj), id(obj_astype))
     self.assertEqual(obj_astype.dtype, np.dtype(newtype))
Exemple #10
0
 def test_datachunk_deepcopy(self):
     obj = DataChunk(data=np.arange(3), selection=np.s_[0:3])
     obj_copy = deepcopy(obj)
     self.assertNotEqual(id(obj), id(obj_copy))
     self.assertNotEqual(id(obj.data), id(obj_copy.data))
     self.assertNotEqual(id(obj.selection), id(obj_copy.selection))
 def test_astype(self):
     temp1 = DataChunk(np.arange(10).reshape(5, 2))
     temp2 = temp1.astype('float32')
     self.assertEqual(temp2.dtype, np.dtype('float32'))
 def test_dtype(self):
     temp = DataChunk(np.arange(10).astype('int'))
     temp_dtype = temp.dtype
     self.assertEqual(temp_dtype, np.dtype('int'))
 def test_len_operator_with_data(self):
     temp = DataChunk(np.arange(10).reshape(5, 2))
     self.assertEqual(len(temp), 5)
 def test_len_operator_no_data(self):
     temp = DataChunk()
     self.assertEqual(len(temp), 0)