def getReconstructionsAligned(idShell, Ilm_na, Lgrid, Lmax=7, vmin = 1e-4, nside=128):

    Ir = np.zeros((hp.nside2npix(nside), np.size(idShell)))
    for id, Ilm in enumerate(Ilm_na):
        Ilm = np.ascontiguousarray(Ilm)

        if id == 0:
            '''align the first shell with theoretically calculated intensity'''
            Ith = np.load('first_shell_to_start_alignment.npy')

            almth = hp.map2alm(Ith, Lmax-1)

            almr = alignShells(almth, Ilm, Lmax-1, Lgrid)

            rI = hp.alm2map(almr, nside)
            neg = np.where(rI < 0)
            rI[neg] = vmin
            Ir[:, 0] = rI

        else:
            ''' Align the succesive shells with respect to each preceding shell
            '''

            almr = alignShells(almr, Ilm, Lmax-1, Lgrid)
            rI = hp.alm2map(almr, nside)
            neg = np.where(rI < 0)
            rI[neg] = vmin
            Ir[:, id] = rI

    return Ir
Exemple #2
0
def sphtrans_inv_real_pol(alm, nside):
    """Inverse spherical harmonic transform onto a real polarised field.

    Parameters
    ----------
    alm : np.ndarray[npol, lmax+1, lmax+1]
        The array of alms. Only expects the real half of the array. The first
        index is over polarisation T, Q, U (and optionally V).
    nside : integer
        The Healpix resolution of the final map.

    Returns
    -------
    hpmaps : np.ndarray[npol, 12*nside**2]
        The T, Q, U and optionally V maps of the sky.
    """
    npol = alm.shape[0]

    if alm.shape[1] != alm.shape[2] or not (npol == 3 or npol == 4):
        raise Exception("a_lm array wrong shape.")

    almp = [pack_alm(alm[0]), pack_alm(alm[1]), pack_alm(alm[2])]

    maps = np.zeros((npol, 12*nside**2), dtype=np.float64)

    maps[:3] = np.array(healpy.alm2map(almp, nside, verbose=False))

    if npol == 4:
        maps[3] = healpy.alm2map(pack_alm(alm[3]), nside, verbose=False)

    return np.array(maps)
    def generate_gaus_map(self, readGmap=-1):
        if (readGmap<0):
            self.gausalm0=hp.synalm(self.inputCls)
        else:
            self.gausalm0=hp.read_alm(self.mapsdir+"gmap_"+str(readGmap)+".fits")

        self.gausalm1=np.copy(self.gausalm0); self.gausalm1[0]=0.0
        if (self.nodipole):
            ndxfl=np.ones(len(self.inputCls))
            ndxfl[1]=0.0
            hp.almxfl(self.gausalm1, ndxfl, inplace=True)
            hp.almxfl(self.gausalm0, ndxfl, inplace=True)

        self.gausmap0=hp.alm2map(self.gausalm0, nside=self.NSIDE) # includes the monopole bit
        self.gausmap1=hp.alm2map(self.gausalm1, nside=self.NSIDE) # does not include the monopole
Exemple #4
0
 def show_CMB_T_map(self,Tmap=None, max=100, title = "CMB graviational potential fluctuations as seen from inside the LSS", from_perspective_of = "observer", cmap=None):
     if Tmap is None:
         self.NSIDE = 256
         self.Tmap = hp.alm2map(self.alm,self.NSIDE)
     else:
         self.Tmap = Tmap
         
     if from_perspective_of == "observer":
         
         dpi = 300
         figsize_inch = 60, 40
         fig = plt.figure(figsize=figsize_inch, dpi=dpi)
         # Sky map:
         hp.mollview(self.Tmap, rot=(-90,0,0),  min=-max, max=max,  title=title + ", $\ell_{max}=$%d " % self.truncated_lmax, cmap=cmap, unit="$\mu$K")
         
         plt.savefig(title+".png", dpi=dpi, bbox_inches="tight")
     
     else:
         # Interactive "external" view ([like this](http://zonca.github.io/2013/03/interactive-3d-plot-of-sky-map.html))            pass
         #   beatbox.zoncaview(self.Tmap)
         # This did not work, sadly. Maybe we can find a 3D
         # spherical surface plot routine using matplotlib? For
         # now, just use the healpix vis.
         R = (0.0,0.0,0.0) # (lon,lat,psi) to specify center of map and rotation to apply
         hp.orthview(self.Tmap,rot=R,flip='geo',half_sky=True,title="CMB graviational potential fluctuations as seen from outside the LSS, $\ell_{max}$=%d" % self.truncated_lmax)
         print "Ahem - we can't visualize maps on the surface of the sphere yet, sorry."
     return
Exemple #5
0
def simulate_cmb(nside=2048, lmax=3000,
                 frequency=100,smear=False,
                 nomap = False, beam=None, beamP=None,
                 save=False, filename='testcmb.fits',
                 cl_file='bf_base_cmbonly_plikHMv18_TT_lowTEB_lmax4000.minimum.theory_cl'):
        
    ls, cltt, clte, clee, clbb = get_theory_cls(lmax=lmax, cl_file=cl_file)
 
    Tlm, Elm, Blm = hp.synalm( (cltt, clee, clbb, clte), new=True, lmax=lmax)

    
    if smear:
        if (beam is None) or (beamP is None) :
            hdulist = fits.open(data_path + 'HFI_RIMO_Beams-100pc_R2.00.fits')
            beam = hdulist[beam_index['{}'.format(frequency)]].data.NOMINAL[0][:lmax+1]
            beamP = hdulist[beam_index['{}P'.format(frequency)]].data.NOMINAL[0][:lmax+1]
        hp.sphtfunc.almxfl(Tlm, beam, inplace=True)
        hp.sphtfunc.almxfl(Elm, beamP, inplace=True)
        hp.sphtfunc.almxfl(Blm, beamP, inplace=True)

    if nomap:
        return Tlm,Elm,Blm
    
    Tmap = hp.alm2map( Tlm, nside )
    Qmap, Umap = hp.alm2map_spin( (Elm, Blm), nside, 2, lmax=lmax)

    if save:
        hp.write_map([Tmap,Qmap,Umap],data_path + filename)
    return Tmap, Qmap, Umap
Exemple #6
0
def fisher_single(par,v) :
    # v -> seen pixels
    nb=len(par.bins)-1
    npix=hp.nside2npix(par.nside)
    npix_seen=len(par.ip_seen)
    lmax=3*par.nside-1
    larr=np.arange(lmax+1)
    fisher=np.zeros([nb,nb])
    pixsize=4*np.pi/hp.nside2npix(par.nside)
    
    v_map=np.zeros(npix); v_map[par.ip_seen]=v
    vcm1=invert_covar(par,v_map)
    v_lm=hp.map2alm(v_map,iter=0)
    vcm1_lm=hp.map2alm(vcm1,iter=0)
    for iba in np.arange(nb) :
#        print " Row %d"%iba
        transfer=np.zeros(lmax+1); transfer[par.bins[iba]:par.bins[iba+1]]=1.
        v_map2=hp.alm2map(hp.almxfl(v_lm,transfer),par.nside,verbose=False)/pixsize #Q_a * v
        v_map2cm1=invert_covar(par,v_map2) #C^-1 * Q_a * v
        va_lm=hp.map2alm(v_map2cm1,iter=0)
        cl_vcm1_va=(2*larr+1)*hp.alm2cl(vcm1_lm,alms2=va_lm)
        for ibb in np.arange(nb-iba)+iba :
            fisher[iba,ibb]=np.sum(cl_vcm1_va[par.bins[ibb]:par.bins[ibb+1]])/pixsize**2
            if iba!=ibb :
                fisher[ibb,iba]=fisher[iba,ibb]

    return fisher
Exemple #7
0
 def test_map2alm_pol_gal_cut(self):
     tmp = [np.empty(o.size * 2) for o in self.mapiqu]
     for t, o in zip(tmp, self.mapiqu):
         t[::2] = o
     maps = [
         self.mapiqu,
         [o.astype(np.float32) for o in self.mapiqu],
         [t[::2] for t in tmp],
     ]
     for use_weights in [False, True]:
         for input in maps:
             gal_cut = 30
             nside = hp.get_nside(input)
             npix = hp.nside2npix(nside)
             gal_mask = (
                 np.abs(hp.pix2ang(nside, np.arange(npix), lonlat=True)[1]) < gal_cut
             )
             alm = hp.map2alm(
                 input, iter=10, use_weights=use_weights, gal_cut=gal_cut
             )
             output = hp.alm2map(alm, 32)
             for i, o in zip(input, output):
                 # Testing requires low tolerances because of the
                 # mask boundary
                 i[gal_mask] = 0
                 np.testing.assert_allclose(i, o, atol=1e-2)
def main(nsim=1, fnl=0.0):

    nl = 1024
    nside_fnl = 512

    # Load map, mll
    print ""
    print "Loading alm_g, alm_ng and creating map..."

    fn_almg = ('data/fnl_sims/alm_l_%04d_v3.fits' % (nsim,))
    #fn_almg = ('data/fnl_sims/alm_l_%i.fits' % (nsim,))
    almg = hp.read_alm(fn_almg)
    #almg = almg[:hp.Alm.getsize(nl)]
    fn_almng = ('data/fnl_sims/alm_nl_%04d_v3.fits' % (nsim,))
    #fn_almng = ('data/fnl_sims/alm_nl_%i.fits' % (nsim,))
    almng = hp.read_alm(fn_almng)
    #almng = almng[:hp.Alm.getsize(nl)]
    alm = almg * (2.7e6) + fnl * almng * (2.7e6) # convert to units of uK to be consistent with other maps

    map_sim_fnl = hp.alm2map(alm, nside=nside_fnl)
    
    #print "Normalizing map..."
    #map_sim_fnl *= (1e6 * 2.7) # convert to units of uK to be consistent with other maps

    fn_map = 'data/fnl_sims/map_fnl_%i_sim_%i.fits' % (int(fnl), nsim)
    print "Writing map: %s" % fn_map
    hp.write_map(fn_map, map_sim_fnl)
Exemple #9
0
    def to_map(self, nside, pixwin=False, fwhm=0.0, sigma=None, 
            pol=True, verbose=False):
        '''Return data for the Healpix map in 'RING' mode with the specified 
        nside (power of 2) generated by these Alm coefficients.

        Parameters
        ----------
        nside : int, scalar
          The nside of the output map.
        pixwin : bool, optional
          Smooth the alm using the pixel window functions. Default: False.
        fwhm : float, scalar, optional
          The fwhm of the Gaussian used to smooth the map (applied on alm)
          [in radians]
        sigma : float, scalar, optional
          The sigma of the Gaussian used to smooth the map (applied on alm)
          [in radians]
        pol : bool, optional
          If True, assumes input alms are TEB. Output will be TQU maps.
          (input must be 1 or 3 alms)
          If False, apply spin 0 harmonic transform to each alm.
          (input can be any number of alms)
          If there is only one input alm, it has no effect. Default: True.

        Returns
        -------
        maps : array or list of arrays
          A Healpix map in RING scheme at nside or a list of T,Q,U maps (if
          polarized input)'''
        return healpy.alm2map(self.get_data(), nside, 
            lmax=self._lmax, mmax=self._mmax,
            pixwin=pixwin, fwhm=fwhm, sigma=sigma, pol=pol, verbose=verbose)
Exemple #10
0
 def setUp(self):
     self.nside = 64
     self.lmax = 96
     alm_size = 4753
     np.random.seed(123)
     self.input_alm = np.ones(alm_size, dtype=np.complex)
     self.m = hp.alm2map(self.input_alm, nside=self.nside, lmax=self.lmax)
Exemple #11
0
def rotate_map_to_axis(m, ra, dec, nest=False, method="direct"):
    """Rotate a sky map to place a given line of sight on the +z axis.

    Parameters
    ----------

    m : np.ndarray
        The input HEALPix array.

    ra : float
        Right ascension of axis in radians.

        To specify the axis in geocentric coordinates, supply ra=(lon + gmst),
        where lon is the geocentric longitude and gmst is the Greenwich mean
        sidereal time in radians.

    dec : float
        Declination of axis in radians.

        To specify the axis in geocentric coordinates, supply dec=lat,
        where lat is the geocentric latitude in radians.

    nest : bool, default=False
        Indicates whether the input sky map is in nested rather than
        ring-indexed HEALPix coordinates (default: ring).

    method : 'direct' or 'fft'
        Select whether to use spherical harmonic transformation ('fft') or
        direct coordinate transformation ('direct')

    Returns
    -------

    m_rotated : np.ndarray
        The rotated HEALPix array.
    """
    npix = len(m)
    nside = hp.npix2nside(npix)

    theta = 0.5 * np.pi - dec
    phi = ra

    if method == "fft":
        if nest:
            m = hp.reorder(m, n2r=True)
        alm = hp.map2alm(m)
        hp.rotate_alm(alm, -phi, -theta, 0.0)
        ret = hp.alm2map(alm, nside, verbose=False)
        if nest:
            ret = hp.reorder(ret, r2n=True)
    elif method == "direct":
        R = hp.Rotator(rot=np.asarray([0, theta, -phi]), deg=False, inv=False, eulertype="Y")
        theta, phi = hp.pix2ang(nside, np.arange(npix), nest=nest)
        ipix = hp.ang2pix(nside, *R(theta, phi), nest=nest)
        ret = m[ipix]
    else:
        raise ValueError("Unrecognized method: {0}".format(method))

    return ret
Exemple #12
0
def mkfullsky(corr, nside, alms=False):
    """Construct a set of correlated Healpix maps.
    
    Make a set of full sky gaussian random fields, given the correlation
    structure. Useful for constructing a set of different redshift slices.

    Parameters
    ----------
    corr : np.ndarray (lmax+1, numz, numz)
        The correlation matrix :math:`C_l(z, z')`.
    nside : integer
        The resolution of the Healpix maps.
    alms : boolean, optional
        If True return the alms instead of the sky maps.

    Returns
    -------
    hpmaps : np.ndarray (numz, npix)
        The Healpix maps. hpmaps[i] is the i'th map.
    """

    numz = corr.shape[1]
    maxl = corr.shape[0]-1

    if corr.shape[2] != numz:
        raise Exception("Correlation matrix is incorrect shape.")

    trans = np.zeros_like(corr)

    for i in range(maxl+1):
        trans[i] = nputil.matrix_root_manynull(corr[i], truncate=False)

    
    la, ma = healpy.Alm.getlm(maxl)

    matshape = la.shape + (numz,)

    # Construct complex gaussian random variables of unit variance
    gaussvars = (np.random.standard_normal(matshape)
                 + 1.0J * np.random.standard_normal(matshape)) / 2.0**0.5

    # Transform variables to have correct correlation structure
    for i, l in enumerate(la):
        gaussvars[i] = np.dot(trans[l], gaussvars[i])

    if alms:
        alm_freq = np.zeros((numz, maxl+1, maxl+1), dtype=np.complex128)
        for i in range(numz):
            alm_freq[i] = hputil.unpack_alm(gaussvars[:, i], maxl)
        
        return alm_freq

    hpmaps = np.empty((numz, healpy.nside2npix(nside)))

    # Perform the spherical harmonic transform for each z
    for i in range(numz):
        hpmaps[i] = healpy.alm2map(gaussvars[:,i].copy(), nside)
        
    return hpmaps
Exemple #13
0
 def direct(self, input, output):
     if input.ndim == 1:
         input = input[:, None]
         output = output[:, None]
     for i, o in zip(input.T, output.T):
         ialm = hp.map2alm(i)
         alm_smoothed = hp.almxfl(ialm, self.fl)
         o[...] = hp.alm2map(alm_smoothed, hp.npix2nside(len(i)))# * \
Exemple #14
0
 def harmonic_ud_grade(m, nside_in, nside_out):
     """
     Decompose a map at a resolution nside_in into spherical harmonic components
     and then resynthesize the map at nside_out.
     """
     lmax = 3 * nside_in - 1
     alm = hp.map2alm(m, lmax=lmax)
     return hp.alm2map(alm, nside_out, lmax=lmax, verbose=False)
def A_matrix_func(data):
    """
    cf eq 25 of eriksen 2004
    """
    Chalf = np.sqrt(data.cl_th[: data.lmax + 1]) * data.beam[: data.lmax + 1]
    map2 = hp.alm2map(hp.almxfl(real2complex_alm(data.alm), Chalf), data.nside) * data.invvar
    alm2 = hp.almxfl(hp.map2alm(map2, data.lmax, use_weights=False) * hp.nside2npix(data.nside) / 4.0 / np.pi, Chalf)
    return data.alm + complex2real_alm(alm2)
def return_map(map_class):
    """
    We solve for C^{-1/2}x, here is to recover x
    """
    Shalf = np.sqrt(map_class.cl_th[: map_class.lmax + 1])
    alm_out = hp.almxfl(real2complex_alm(map_class.alm), Shalf)
    cl_out = hp.alm2cl(alm_out)
    map_out = hp.alm2map(alm_out, map_class.nside)
    return cl_out, map_out
Exemple #17
0
def hires_healpixellize(map_data,theta,phi,nside_interp,nside_synth):
    
    map = healpixellize(map_data,theta,phi,nside_interp)
    
    lmax = 3*nside_interp-1
#    l,m=hp.Alm.getlm(lmax)
    alm = hp.map2alm(map,lmax=lmax)
    
    return hp.alm2map(alm,nside_synth,lmax=lmax)
def TQU_TO_TEB_maps(sky_TQU, lmax):
    nside = hp.get_nside(sky_TQU)

    alm_in = hp.map2alm(sky_TQU, lmax, pol=True)

    sky_TEB = np.empty((3, 12*nside**2))
    for i in range(3):
        sky_TEB[i] = hp.alm2map(alm_in[i], nside, pol=False)

    return sky_TEB
Exemple #19
0
def remove_low_l(map1, mask1):
    map1m=hp.ma(map1)
    map1m.mask=np.logical_not(mask1)
    map2=np.ma.masked_values(map1, UNSEEN)
    alm2=hp.map2alm(map2, lmax=LMAX)
    fac2=np.array([1.]*(LMAX+1))
    fac2[0:lREM]=0.
    alm2n=hp.sphtfunc.almxfl(alm2, fac2, inplace=False)
    map2new=hp.ma(hp.alm2map(alm2n, 2048))
    map2new.mask=np.logical_not(mask1)
    return map2new
Exemple #20
0
def harmonic_ud_grade(hmap, nside):
    """
    Decompose a map at a resolution nside_in into spherical harmonic components
    and then resynthesize the map at nside_out.
    """
    npix_in = len(hmap)
    nside_in = hp.npix2nside(npix_in)
    lmax_in = 3 * nside_in - 1
    hmap_out = hp.alm2map(hp.map2alm(hmap, lmax=lmax_in), nside, verbose=False)

    return hmap_out
def TEB_to_TQU_maps(sky_TEB, lmax):
    nside = hp.get_nside(sky_TEB)

    alm = np.empty((3, (lmax + 1)**2))
    
    for i in range(3):
        alm[i] = hp.map2alm(sky_TEB[i], lmax, pol=False)

    sky_TQU = hp.alm2map(alm, nside, lmax, pol=True)

    return sky_TQU
Exemple #22
0
def simulate_tebp_correlated(cl_tebp_arr,nside,lmax) :
	alms=healpy.synalm(cl_tebp_arr,lmax=lmax,new=True)
	aphi=alms[-1]
	acmb=alms[0:-1]
#Set to zero above map resolution to avoid aliasing
	beam_cut=np.ones(3*nside)
	for ac in acmb :
		healpy.almxfl(ac,beam_cut,inplace=True)
	cmb=np.array(healpy.alm2map(acmb,nside,pol=True))

	return cmb,aphi
Exemple #23
0
 def test_map2alm_pol(self):
     tmp = [np.empty(o.size*2) for o in self.mapiqu]
     for t, o in zip(tmp, self.mapiqu):
         t[::2] = o
     maps = [self.mapiqu, [o.astype(np.float32) for o in self.mapiqu],
             [t[::2] for t in tmp]]
     for input in maps:
         alm = hp.map2alm(input, iter=10)
         output = hp.alm2map(alm, 32)
         for i, o in zip(input, output):
             np.testing.assert_allclose(i, o, atol=1e-4)
Exemple #24
0
def simulate_tebp_correlated(cl_tebp_arr,nside,lmax,seed):
        np.random.seed(seed)
        alms=hp.synalm(cl_tebp_arr,lmax=lmax,new=True)
        aphi=alms[-1]
        acmb=alms[0:-1]
#Set to zero above map resolution to avoid aliasing                                        
        beam_cut=np.ones(3*nside)
        for ac in acmb :
                hp.almxfl(ac,beam_cut,inplace=True)
        cmb=np.array(hp.alm2map(acmb,nside,pol=True,verbose=False))

        return cmb,aphi
Exemple #25
0
def best_daughter_sp(mother, true, error, differences, loops, nside):
	#takes inputs of mother (guessalm), true(real map of shear), error on true, differences in alm space of values between true and mother, iterations to output the best guess
	mother2=np.asanyarray(mother)
	malm=mother2.copy() #mother input as pixel space map of three arrays - a scalar (ie galaxy density), gamma1, gamma2
	true2=np.asanyarray(true)
#	[galdens, E_lm_m, B_lm_m]=hp.map2alm(mother2.copy(), pol=True)
#	malm=E_lm.copy()
	[galdensr, E_lm, B_lm]=hp.map2alm(true2.copy(), pol=True)
	fudge=error.copy()
	correct=true[1]+1j*true[2]

	
	daughter1=make_daughter_sp(malm.copy(), differences, nside=nside)
	bestdaughter=daughter1.copy()
	d1in=[galdensr, daughter1, B_lm]
	[num, d1shear1, d1shear2]=hp.alm2map(d1in, nside=nside, pol=True)
	chilist=[0]*loops
	chilist[0]=chi_squared(d1shear1+1j*d1shear2, correct, fudge)
#	print(chilist.shape)
	print(chilist[0].shape)
	bestchi=chilist[0]
	for g in range(0, loops):
		daughter2=make_daughter_sp(malm.copy(), differences, nside=nside)
		d2in=[galdensr, daughter2, B_lm]
		[num, d2shear1, d2shear2]=hp.alm2map(d2in, nside=nside, pol=True)
		chiagain=chi_squared(d2shear1+1j*d2shear2, correct, fudge)
		chilist[g]=chiagain
		print(bestchi.shape)
		if chilist[g] < bestchi:
			bestchi=chiagain
			bestdaughter=daughter2.copy()
			print('woo')
		print(g)
	dout=[galdensr, bestdaughter, B_lm]

	hp.visufunc.mollview(map_mass_lm(bestdaughter.copy(), (3*nside)-1, nside))
	mpl.savefig('fittedmass.png')
	mpl.close()
	[gals, bestmapg1, g2]=hp.alm2map(dout, nside=nside, pol=True)
	return bestmapg1+(1j*g2), bestchi
Exemple #26
0
    def generate_gaus_map(self, readGmap=-1):
        if (readGmap<0):
            self.gausalm=hp.synalm(self.inputCls)
        else:
            # code assumes that self.mapsdir="maps50/"
            self.gausalm=hp.read_alm(self.mapsdir+"gmap_"+str(readGmap)+".fits")
            ns=0.965
            C0N=(1.0-np.exp(-(ns-1)*self.efolds))/(ns-1)
            C050=(1.0-np.exp(-(ns-1)*50))/(ns-1)
            alm0r=np.sqrt(C0N/C050)
            self.gausalm[0]=self.gausalm[0]*alm0r

        self.gausmap=hp.alm2map(self.gausalm, nside=self.NSIDE) # includes the monopole bit
Exemple #27
0
    def simulate(self, det, idx):
        assert( det in (dmc.wmap_das + dmc.wmap_bands) )
        
        tlm = self.sim_tlm_cmb.get_sim_tlm(idx)
        
        hp.almxfl(tlm, self.get_beam(det), inplace=True)
            
        tmap = hp.alm2map(tlm, self.nside)

        tmap_nse = self.simulate_nse(det)
        tmap += tmap_nse; del tmap_nse
        
        return tmap
Exemple #28
0
 def show_one_spherical_harmonic_of_CMB_T_map(self,l=1,m=1,max=20):
     """
     To do this we need to make a healpy-format alm array, with
     just one non-zero complex value in it, which we extract
     from the parent alm array. Since healpy only returns positive
     m coefficients, we just ask to see component with that |m|.
     """
     projected_alm = self.alm * 0.0
     i = hp.Alm.getidx(self.lmax, l, np.abs(m)) # Note |m| here
     projected_alm[i] = self.alm[i]
     projected_map = hp.alm2map(projected_alm,self.NSIDE)
     hp.mollview(projected_map)
     return
Exemple #29
0
def map_mass_lm(E_lm, L, nside):
#courtesy of Boris Leistedt's code
	lfac=np.zeros(E_lm.shape)
	for el in range(L):
		for em in range(L):
			lfac[lm_indices(el, em, L)]=el

	phiE_lm=-2*E_lm/np.sqrt((lfac+2)*(lfac+1)*(lfac)*(lfac-1))
	phiE_lm[np.isnan(phiE_lm)]=0
	kappa_lm=-lfac*(lfac+1)*(phiE_lm/2)
	kappa_lm[np.isnan(kappa_lm)]=0
	kappa_map=hp.alm2map(kappa_lm, nside=nside, lmax=3*nside-1, pol=False)

	return kappa_map
Exemple #30
0
    def apply_alm(self, alm):
        # applies Y^T N^{-1} Y
        npix = len(self.n_inv)
        
        hp.almxfl(alm, self.b_transf, inplace=True)

        tmap = hp.alm2map(alm, hp.npix2nside(npix))

        self.apply_map(tmap)

        alm[:]  = hp.map2alm(tmap, lmax=util_alm.nlm2lmax(len(alm)), iter=0, regression=False)
        alm[:] *= (npix / (4.*np.pi))
        
        hp.almxfl(alm, self.b_transf, inplace=True)
Exemple #31
0
    return maxi, maxang, mini, minang


iterations = []
# Initialize data arrays
D = np.zeros((1 + len(iterations), nDipoles))
raAvg = np.zeros((len(lats), len(fovs), nDipoles))
covs = np.zeros((len(lats), len(fovs), nDipoles))

# Loop over dipoles orientations
for dipole in range(0, nDipoles):

    almtemp = h.map2alm(np.zeros(12 * nside * nside), lmax=lmax)
    almtemp[h.sphtfunc.Alm.getidx(lmax=lmax, l=1, m=0)] = dipole
    almtemp[h.sphtfunc.Alm.getidx(lmax=lmax, l=1, m=1)] = 10 - dipole
    truemap = h.alm2map(almtemp, nside, lmax=lmax)
    truemap *= strength / max(truemap)

    print "========="
    print "Dipole %d" % dipole
    maxi, maxang, mini, minang = GetMaxMin(truemap)
    D[0, dipole] = 90. - maxang[0] / degree

    # Strength for RA average subtracted
    # Loop over possible detector latitudes
    for ilat, lat in enumerate(lats):
        for ifov, fov in enumerate(fovs):
            raAvgmap = truemap.copy()
            raAvgFOVmap = truemap.copy()

            decHi = lat + fov * .5
Exemple #32
0
def test_satellite_scan(lmax=700,
                        mmax=2,
                        fwhm=43,
                        ra0=-10,
                        dec0=-57.5,
                        az_throw=50,
                        scan_speed=2.8,
                        hwp_mode=None,
                        alpha=45.,
                        beta=45.,
                        alpha_period=5400.,
                        beta_period=600.,
                        delta_az=0.,
                        delta_el=0.,
                        delta_psi=0.,
                        jitter_amp=1.0):
    '''
    Simulates a satellite scan strategy 
    using a random LCDM realisation and a 3 x 3 grid
    of Gaussian beams pairs. Bins tods into maps and
    compares to smoothed input maps (no pair-
    differencing). MPI-enabled.

    Keyword arguments
    ---------

    lmax : int,
        bandlimit (default : 700)
    mmax : int, 
        assumed azimuthal bandlimit beams (symmetric in this example
        so 2 would suffice) (default : 2)
    fwhm : float,
        The beam FWHM in arcmin (default : 40)
    ra0 : float,
        Ra coord of centre region (default : -10)
    dec0 : float,  (default : -57.5)
        Ra coord of centre region
    az_throw : float,
        Scan width in azimuth (in degrees) (default : 50)
    scan_speed : float,
        Scan speed in deg/s (default : 1)
    hwp_mode : str, None
        HWP modulation mode, either "continuous",
        "stepped" or None. Use freq of 1 or 1/10800 Hz
        respectively (default : None)
    '''

    print('Simulating a satellite...')
    mlen = 3 * 24 * 60 * 60  # hardcoded mission length

    # Create LCDM realization
    ell, cls = get_cls()
    np.random.seed(25)  # make sure all MPI ranks use the same seed
    alm = hp.synalm(cls, lmax=lmax, new=True, verbose=True)  # uK

    sat = ScanStrategy(
        mlen,  # mission duration in sec.
        external_pointing=True,  # Telling code to use non-standard scanning
        sample_rate=12.01,  # sample rate in Hz
        location='space')  # Instrument at south pole

    # Create a 3 x 3 square grid of Gaussian beams
    sat.create_focal_plane(nrow=7, ncol=7, fov=15, lmax=lmax, fwhm=fwhm)

    # calculate tods in two chunks
    sat.partition_mission(0.5 * sat.nsamp)

    # Allocate and assign parameters for mapmaking
    sat.allocate_maps(nside=256)

    scan_opts = dict(q_bore_func=sat.satellite_scan,
                     ctime_func=sat.satellite_ctime,
                     q_bore_kwargs=dict(),
                     ctime_kwargs=dict())

    # Generate timestreams, bin them and store as attributes
    sat.scan_instrument_mpi(alm,
                            verbose=1,
                            ra0=ra0,
                            dec0=dec0,
                            az_throw=az_throw,
                            nside_spin=256,
                            max_spin=mmax,
                            **scan_opts)

    # Solve for the maps
    maps, cond, proj = sat.solve_for_map(fill=np.nan, return_proj=True)

    # Plotting
    if sat.mpi_rank == 0:
        print('plotting results')

        cart_opts = dict(unit=r'[$\mu K_{\mathrm{CMB}}$]')

        # plot rescanned maps

        plot_iqu(maps,
                 '../scratch/img/',
                 'rescan_satellite',
                 sym_limits=[250, 5, 5],
                 plot_func=hp.mollview,
                 **cart_opts)

        # plot smoothed input maps
        nside = hp.get_nside(maps[0])
        hp.smoothalm(alm, fwhm=np.radians(fwhm / 60.), verbose=False)
        maps_raw = hp.alm2map(alm, nside, verbose=False)

        plot_iqu(maps_raw,
                 '../scratch/img/',
                 'raw_satellite',
                 sym_limits=[250, 5, 5],
                 plot_func=hp.mollview,
                 **cart_opts)

        # plot difference maps
        for arr in maps_raw:
            # replace stupid UNSEEN crap
            arr[arr == hp.UNSEEN] = np.nan

        diff = maps_raw - maps

        plot_iqu(diff,
                 '../scratch/img/',
                 'diff_satellite',
                 sym_limits=[1e-6, 1e-6, 1e-6],
                 plot_func=hp.mollview,
                 **cart_opts)

        # plot condition number map
        cart_opts.pop('unit', None)

        plot_map(cond,
                 '../scratch/img/',
                 'cond_satellite',
                 min=2,
                 max=5,
                 unit='condition number',
                 plot_func=hp.mollview,
                 **cart_opts)

        plot_map(proj[0],
                 '../scratch/img/',
                 'hits_satellite',
                 unit='Hits',
                 plot_func=hp.mollview,
                 **cart_opts)
Exemple #33
0
def test_ghosts(lmax=700,
                mmax=5,
                fwhm=43,
                ra0=-10,
                dec0=-57.5,
                az_throw=50,
                scan_speed=2.8,
                rot_period=4.5 * 60 * 60,
                hwp_mode=None):
    '''
    Similar test to `scan_bicep`, but includes reflected ghosts

    Simulates a 24h BICEP2-like scan strategy
    using a random LCDM realisation and a 3 x 3 grid
    of Gaussian beams pairs. Bins tods into maps and
    compares to smoothed input maps (no pair-
    differencing). MPI-enabled.

    Keyword arguments
    ---------

    lmax : int,
        bandlimit (default : 700)
    mmax : int,
        assumed azimuthal bandlimit beams (symmetric in this example
        so 2 would suffice) (default : 5)
    fwhm : float,
        The beam FWHM in arcmin (default : 40)
    ra0 : float,
        Ra coord of centre region (default : -10)
    dec0 : float,  (default : -57.5)
        Ra coord of centre region
    az_throw : float,
        Scan width in azimuth (in degrees) (default : 50)
    scan_speed : float,
        Scan speed in deg/s (default : 1)
    rot_period : float,
        The instrument rotation period in sec
        (default : 600)
    hwp_mode : str, None
        HWP modulation mode, either "continuous",
        "stepped" or None. Use freq of 1 or 1/10800 Hz
        respectively (default : None)
    '''

    mlen = 24 * 60 * 60  # hardcoded mission length

    # Create LCDM realization
    ell, cls = get_cls()
    np.random.seed(25)  # make sure all MPI ranks use the same seed
    alm = hp.synalm(cls, lmax=lmax, new=True, verbose=True)  # uK

    b2 = ScanStrategy(
        mlen,  # mission duration in sec.
        sample_rate=12.01,  # sample rate in Hz
        location='spole')  # Instrument at south pole

    # Create a 3 x 3 square grid of Gaussian beams
    b2.create_focal_plane(nrow=3, ncol=3, fov=5, lmax=lmax, fwhm=fwhm)

    # Create reflected ghosts for every detector
    # We create two ghosts per detector. They overlap
    # but have different fwhm. First ghost is just a
    # scaled down version of the main beam, the second
    # has a much wider Gaussian shape.
    # After this initialization, the code takes
    # the ghosts into account without modifications
    b2.create_reflected_ghosts(b2.beams,
                               amplitude=0.01,
                               ghost_tag='ghost_1',
                               dead=False)
    b2.create_reflected_ghosts(b2.beams,
                               amplitude=0.01,
                               fwhm=100,
                               ghost_tag='ghost_2',
                               dead=False)

    # calculate tods in two chunks
    b2.partition_mission(0.5 * b2.nsamp)

    # Allocate and assign parameters for mapmaking
    b2.allocate_maps(nside=256)

    # set instrument rotation
    b2.set_instr_rot(period=rot_period, angles=[68, 113, 248, 293])

    # Set HWP rotation
    if hwp_mode == 'continuous':
        b2.set_hwp_mod(mode='continuous', freq=1.)
    elif hwp_mode == 'stepped':
        b2.set_hwp_mod(mode='stepped', freq=1 / (3 * 60 * 60.))

    # Generate timestreams, bin them and store as attributes
    b2.scan_instrument_mpi(alm,
                           verbose=1,
                           ra0=ra0,
                           dec0=dec0,
                           az_throw=az_throw,
                           nside_spin=256,
                           max_spin=mmax)

    # Solve for the maps
    maps, cond = b2.solve_for_map(fill=np.nan)

    # Plotting
    if b2.mpi_rank == 0:
        print('plotting results')

        cart_opts = dict(
            rot=[ra0, dec0, 0],
            lonra=[-min(0.5 * az_throw, 90),
                   min(0.5 * az_throw, 90)],
            latra=[-min(0.375 * az_throw, 45),
                   min(0.375 * az_throw, 45)],
            unit=r'[$\mu K_{\mathrm{CMB}}$]')

        # plot rescanned maps
        plot_iqu(maps,
                 '../scratch/img/',
                 'rescan_ghost',
                 sym_limits=[250, 5, 5],
                 plot_func=hp.cartview,
                 **cart_opts)

        # plot smoothed input maps
        nside = hp.get_nside(maps[0])
        hp.smoothalm(alm, fwhm=np.radians(fwhm / 60.), verbose=False)
        maps_raw = hp.alm2map(alm, nside, verbose=False)

        plot_iqu(maps_raw,
                 '../scratch/img/',
                 'raw_ghost',
                 sym_limits=[250, 5, 5],
                 plot_func=hp.cartview,
                 **cart_opts)

        # plot difference maps
        for arr in maps_raw:
            # replace stupid UNSEEN crap
            arr[arr == hp.UNSEEN] = np.nan

        diff = maps_raw - maps

        plot_iqu(diff,
                 '../scratch/img/',
                 'diff_ghost',
                 sym_limits=[1e+1, 1e-1, 1e-1],
                 plot_func=hp.cartview,
                 **cart_opts)

        # plot condition number map
        cart_opts.pop('unit', None)

        plot_map(cond,
                 '../scratch/img/',
                 'cond_ghost',
                 min=2,
                 max=5,
                 unit='condition number',
                 plot_func=hp.cartview,
                 **cart_opts)

        # plot input spectrum
        cls[3][cls[3] <= 0.] *= -1.
        dell = ell * (ell + 1) / 2. / np.pi
        plt.figure()
        for i, label in enumerate(['TT', 'EE', 'BB', 'TE']):
            plt.semilogy(ell, dell * cls[i], label=label)

        plt.legend()
        plt.ylabel(r'$D_{\ell}$ [$\mu K^2_{\mathrm{CMB}}$]')
        plt.xlabel(r'Multipole [$\ell$]')
        plt.savefig('../scratch/img/cls_ghost.png')
        plt.close()
Exemple #34
0
fname_alm = "Planck_data/COM_Lensing_2048_R2.00/dat_klm.fits"
# Mask
fname_msk = "Planck_data/COM_Lensing_2048_R2.00/mask.fits.gz"
# Output prefix
predir_out = "/mnt/extraspace/damonge/S8z_data/derived_products/planck_lensing/"
os.system("mkdir -p " + predir_out)

# Read original alms
print("Reading kappa alms")
alm_g = hp.read_alm(predir_in + fname_alm)
# Rotate alms to Equatorial coordinates
print("Rotating to Equatorial")
alm_c = rotate_alm_g_c(alm_g)
# Compute map
print("Transforming to pixels")
mpk = hp.alm2map(alm_c, nside)
print("Writing output map")
hp.write_map(predir_out + "map_kappa_ns%d.fits" % nside,
             mpk, overwrite=True)

# Same thing with mask
print("Reading original mask")
msk_g = hp.read_map(predir_in + fname_msk, verbose=False)
print("Rotating to Equatorial")
msk_c = rotate_map_g_c(msk_g)
# Binarize
msk_c[msk_c < 0.5] = 0
msk_c[msk_c >= 0.5] = 1.
# Up/down-grade to chosen pixelization
msk_c = hp.ud_grade(msk_c, nside_out=nside)
print("Writing output mask")
                                      region,
                                      "tsz",
                                      'cmb',
                                      "joint",
                                      beam=True)
    dbfile = tutils.get_generic_fname(tdir,
                                      region,
                                      "tsz",
                                      'cib',
                                      "joint",
                                      beam=True)

    imask = enmap.read_map(
        tutils.get_generic_fname(tdir, region, "tsz", None, "joint",
                                 mask=True))
    dmask = hp.alm2map(
        cs.map2alm(imask, lmax=lmax).astype(np.complex128), nside)

    dmask[dmask < 0.5] = 0
    dmask[dmask > 0.5] = 1
    jmask = dmask * mask
    io.mollview(jmask, os.environ['WORK'] + '/jmask_%s.png' % region)

    fsky = jmask.sum() / jmask.size
    print(fsky * 41252.)
    delta = hdelta * jmask
    galm = hp.map2alm(delta, lmax=lmax)

    for bfile, imap in zip([ybfile, cbfile, dbfile], [ymap, cmap, dmap]):
        yalm = hp.map2alm(
            hp.alm2map(cs.map2alm(imap, lmax=lmax).astype(np.complex128),
                       nside=nside) * jmask,
Exemple #36
0
def mapmaker(params, post):

    # size of the blm array
    blm_size = Alm.getsize(params['lmax'])

    ## we will plot with a larger nside than the analysis for finer plots
    nside = 2 * params['nside']

    npix = hp.nside2npix(nside)

    # Initialize power skymap
    omega_map = np.zeros(npix)

    blmax = params['lmax']

    for ii in range(post.shape[0]):

        sample = post[ii, :]

        # Omega at 1 mHz
        Omega_1mHz = (10**(sample[3])) * (1e-3 / 25)**(sample[2])

        ## blms.
        blms = np.append([1], sample[4:])

        ## Complex array of blm values for both +ve m values
        blm_vals = np.zeros(blm_size, dtype='complex')

        ## this is b00, alsways set to 1
        blm_vals[0] = 1
        norm, cnt = 1, 1

        for lval in range(1, blmax + 1):
            for mval in range(lval + 1):

                idx = Alm.getidx(blmax, lval, mval)

                if mval == 0:
                    blm_vals[idx] = blms[cnt]
                    cnt = cnt + 1
                else:
                    ## prior on amplitude, phase
                    blm_vals[idx] = blms[cnt] * np.exp(1j * blms[cnt + 1])
                    cnt = cnt + 2

        norm = np.sum(blm_vals[0:(blmax + 1)]**2) + np.sum(
            2 * np.abs(blm_vals[(blmax + 1):])**2)

        prob_map = (1.0 / norm) * (hp.alm2map(blm_vals, nside,
                                              verbose=False))**2

        ## add to the omega map
        omega_map = omega_map + Omega_1mHz * prob_map

    omega_map = omega_map / post.shape[0]

    hp.mollview(omega_map,
                title='Posterior predictive skymap of $\\Omega(f= 1mHz)$')
    hp.graticule()
    plt.savefig(params['out_dir'] + '/post_skymap.png', dpi=150)
    print('saving injected skymap at ' + params['out_dir'] +
          '/post_skymap.png')
    plt.close()

    #### ------------ Now plot median value

    # median values of the posteriors
    med_vals = np.median(post, axis=0)

    ## blms.
    blms_median = np.append([1], med_vals[4:])

    # Omega at 1 mHz
    Omega_1mHz_median = (10**(med_vals[3])) * (1e-3 / 25)**(med_vals[2])

    ## Complex array of blm values for both +ve m values
    blm_median_vals = np.zeros(blm_size, dtype='complex')

    ## this is b00, alsways set to 1
    blm_median_vals[0] = 1
    cnt = 1

    for lval in range(1, blmax + 1):
        for mval in range(lval + 1):

            idx = Alm.getidx(blmax, lval, mval)

            if mval == 0:
                blm_median_vals[idx] = blms_median[cnt]
                cnt = cnt + 1
            else:
                ## prior on amplitude, phase
                blm_median_vals[idx] = blms_median[cnt] * np.exp(
                    1j * blms_median[cnt + 1])
                cnt = cnt + 2

    norm = np.sum(blm_median_vals[0:(blmax + 1)]**2) + np.sum(
        2 * np.abs(blm_median_vals[(blmax + 1):])**2)

    Omega_median_map = Omega_1mHz_median * (1.0 / norm) * (hp.alm2map(
        blm_median_vals, nside, verbose=False))**2

    hp.mollview(omega_map, title='median skymap of $\\Omega(f= 1mHz)$')
    hp.graticule()
    plt.savefig(params['out_dir'] + '/post_median_skymap.png', dpi=150)
    print('saving injected skymap at ' + params['out_dir'] +
          '/post_median_skymap.png')
    plt.close()

    return
Exemple #37
0
    for ipix in xrange(0, num_pix):
        product = arr1[ipix] * arr2[ipix] * arr3[ipix]
        bi_sum += product
    bi_sum /= (4.0 * np.pi * num_pix
               )  # If masked then num_pix is total number of unmasked pixels
    return bi_sum


# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

filename = '/dataspace/sandeep/Bispectrum_data/fnl_test/Elsner_alm/alm_l_0001_v3.fits'
filename1 = '/dataspace/sandeep/Bispectrum_data/fnl_test/Elsner_alm/alm_nl_0001_v3.fits'

alm_1 = hp.read_alm(filename)
alm_nl_1 = hp.read_alm(filename1)
map_20 = hp.alm2map((alm_1 + 20 * alm_nl_1) * 2.7255, 1024)

lmax = 2500
"""
cl = hp.anafast(map_20, lmax=lmax)
ell = np.arange(len(cl))
# map_save = hp.mollview(map_20*1e6*2.7255, min=-500, max=500, unit="$\mu K$") # gives me the attached figure.
plt.figure(1)
plt.plot(ell, ell * (ell+1) * cl, color='crimson')
plt.xlabel('ell'); plt.ylabel('ell(ell+1)cl'); plt.grid()
plt.savefig("/home/sandeep/Benjamin_Test_cl.eps", dpi=100)
plt.show()
"""

nside_f_est = 1024
Exemple #38
0
def apply_smoothing_and_coord_transform(input_map,
                                        fwhm=None,
                                        rot=None,
                                        lmax=None,
                                        map_dist=None):
    """Apply smoothing and coordinate rotation to an input map

    it applies the `healpy.smoothing` Gaussian smoothing kernel if `map_dist`
    is None, otherwise applies distributed smoothing with `libsharp`.
    In the distributed case, no rotation is supported.

    Parameters
    ----------
    input_map : ndarray
        Input map, of shape `(3, npix)`
        This is assumed to have no beam at this point, as the
        simulated small scale tempatle on which the simulations are based
        have no beam.
    fwhm : astropy.units.Quantity
        Full width at half-maximum, defining the
        Gaussian kernels to be applied.
    rot: hp.Rotator
        Apply a coordinate rotation give a healpy `Rotator`, e.g. if the
        inputs are in Galactic, `hp.Rotator(coord=("G", "C"))` rotates
        to Equatorial

    Returns
    -------
    smoothed_map : np.ndarray
        Array containing the smoothed sky
    """

    if map_dist is None:
        nside = hp.get_nside(input_map)
        alm = hp.map2alm(
            input_map,
            lmax=lmax,
            use_pixel_weights=True if nside > 16 else False,
            verbose=False,
        )
        if fwhm is not None:
            hp.smoothalm(alm,
                         fwhm=fwhm.to_value(u.rad),
                         verbose=False,
                         inplace=True,
                         pol=True)
        if rot is not None:
            rot.rotate_alm(alm, inplace=True)
        smoothed_map = hp.alm2map(alm,
                                  nside=nside,
                                  verbose=False,
                                  pixwin=False)

    else:
        assert (rot is None) or (
            rot.coordin
            == rot.coordout), "No rotation supported in distributed smoothing"
        smoothed_map = mpi.mpi_smoothing(input_map, fwhm, map_dist)

    if hasattr(input_map, "unit"):
        smoothed_map <<= input_map.unit
    return smoothed_map
Exemple #39
0
import matplotlib.pyplot as plt

nside = 128
L = 128
J_min = 1
B = 3
J = pys2let_j_max(B, L, J_min)

# The filename of some random healpix map
fname = '/Users/bl/Dropbox/Wavelets/s2let/data/somecmbsimu_hpx_128.fits'

# Read healpix map and compute alms.
# f_lm has size L*(L+1)/2
f_ini = hp.read_map(fname)  # Initial map
f_lm = hp.map2alm(f_ini, lmax=L - 1)  # Its alms
f = hp.alm2map(f_lm, nside=nside, lmax=L - 1)  # Band limited version

hp.mollview(f)

# Call pys2let and compute wavelet transform. Returns the harmonic coefficients of the wavelets.
# f_scal_lm has size L*(L+1)/2
# f_wav_lm has size L*(L+1)/2 by J-J_min+1
f_wav_lm, f_scal_lm = analysis_axisym_lm_wav(f_lm, B, L, J_min)

# Reconstruct healpix maps on the sphere and plot them
f_scal = hp.alm2map(f_scal_lm, nside=nside, lmax=L - 1)
hp.mollview(f_scal)
f_wav = np.empty([12 * nside * nside, J - J_min + 1])
for j in range(J - J_min + 1):
    flm = f_wav_lm[:, j].ravel()
    f_wav[:, j] = hp.alm2map(flm, nside=nside, lmax=L - 1)
Exemple #40
0
def residual(nside,
             alms,
             lmax,
             blms,
             Ideal_comp=True,
             Conv_comp=False,
             Smooth_comp=False,
             View_diffMap=False,
             Plot=False):
    '''
    Compute the APS of the residual maps which are the differnce maps between
    the output map and the input map convolved with the beam. 
    ---------
    nside: int
        the nside of the map
    alms : array-like
        array of alm arrays that
        share lmax and mmax. For each frequency we have three healpy alm array
    lmax: int
        The bandlmit.
    blms : array-like
        array of alm arrays that share lmax and mmax. Realtive to optical beam.
        For each frequency we have three healpy blm array
        
    Keyword arguments
    -----------------
    View_diffMap : bool
        if True: Display the residual maps
        (default : False)
    Plot : bool
        if True: shows the residual APS and store them in the output folder 
        (default : False)
    '''

    Freq = [90, 95, 100, 105, 110]
    for freq, alm, blm in zip(Freq, alms, blms):
        O_maps = hp.read_map(opj(dir_out, 'Output_maps/Bconv_' + str(freq) +
                                 'GHz.fits'),
                             field=(0, 1, 2),
                             verbose=False)
        In_maps = hp.read_map(opj(dir_inp,
                                  'pysm_maps/CMB_' + str(freq) + 'GHz.fits'),
                              field=(0, 1, 2),
                              verbose=False)

        O_maps[np.isnan(O_maps)] = 0.
        In_maps[np.isnan(In_maps)] = 0.

        # ## COMPARISON wrt IDEAL CASE
        if Ideal_comp:
            Ideal_maps = hp.read_map(opj(
                dir_ideal, 'Output_maps/Bconv_' + str(freq) + 'GHz.fits'),
                                     field=(0, 1, 2),
                                     verbose=False)
            Ideal_maps[np.isnan(Ideal_maps)] = 0.
            cl_in = hp.anafast(Ideal_maps, lmax=lmax - 1, mmax=4)
            res_maps_ring = O_maps - Ideal_maps
            res_maps_ring[np.isnan(res_maps_ring)] = 0.

        # ## COMPARISON wrt PYSM MAP CONVOLVED WITH OPTICAL BEAM
        elif Conv_comp:
            blmax = hp.Alm.getlmax(alm[0].size)
            blm = trunc_alm(blm, blmax)
            alm = alm * blm
            In_maps_sm = hp.alm2map(alm,
                                    nside=hp.get_nside(O_maps),
                                    pol=True,
                                    verbose=False)
            cl_in = hp.anafast(In_maps_sm, lmax=lmax - 1, mmax=4)
            hp.write_map(opj(dir_out, 'Smoot_IM/In_map_smoot_' + str(freq) +
                             'GHz.fits'),
                         In_maps_sm,
                         overwrite=True)
            res_maps_ring = O_maps - In_maps_sm
            res_maps_ring[np.isnan(res_maps_ring)] = 0.

        # ## COMPARISON wrt PYSM MAP SMOOTHED WITH GAUSSIAN BEAM
        elif Smooth_comp:
            In_maps_gauss = hp.smoothing(In_maps,
                                         fwhm=np.radians(32.2 / 60),
                                         verbose=False)
            cl_in = hp.anafast(In_maps_gauss, lmax=lmax - 1, mmax=4)
            hp.write_map(opj(dir_out, 'Gauss_IM/In_map_gauss_' + str(freq) +
                             'GHz.fits'),
                         In_maps_gauss,
                         overwrite=True)
            res_maps_ring = O_maps - In_maps_gauss
            res_maps_ring[np.isnan(res_maps_ring)] = 0.

        hp.write_map(opj(dir_out,
                         'Res_Maps/res_maps_' + str(freq) + 'GHz.fits'),
                     res_maps_ring,
                     overwrite=True)

        cl_res = hp.anafast(res_maps_ring, lmax=lmax - 1,
                            mmax=4)  ## TT,EE,BB,TE,EB,TB
        np.save(
            os.path.join(dir_out + 'residual_spectra/Cell_' + str(freq) +
                         'GHz.npy'), cl_res)

        ratio_cl_res = np.zeros((6, lmax))
        ratio_cl_res[:, 2:] = (
            cl_res[:, 2:lmax] / cl_in[:, 2:lmax]
        ) * 100  ### the first two multipoles in cl_in are zeros, so we will have a numerical problem..
        np.save(
            os.path.join(dir_out + 'residual_spectra/perc_Cell_' + str(freq) +
                         'GHz.npy'), ratio_cl_res)

        if View_diffMap:
            cart_opts = dict(unit=r'[$\mu K_{\mathrm{CMB}}$]')
            hp.cartview(res_maps_ring[0], min=-250, max=250, **cart_opts)
            hp.cartview(res_maps_ring[1], min=-5, max=5, **cart_opts)
            hp.cartview(res_maps_ring[2], min=-5, max=5, **cart_opts)
            plt.show()

        if Plot:
            plot_APS_residual(
                ratio_cl_res[0], ratio_cl_res[1], ratio_cl_res[2], dir_out +
                'residual_spectra/plots/Cell' + str(freq) + 'GHz.pdf',
                r'$\nu = $' + str(freq) + 'GHz')
Exemple #41
0
mask_planck = hp.read_map('data/planck/data/mask_ns2048.fits',
                          dtype=None,
                          verbose=False).astype(float)
map_planck = hp.read_map('data/planck/data/map_kappa_ns2048.fits',
                         dtype=None,
                         verbose=False).astype(float)
alm_planck = hp.map2alm(map_planck)
ll, nll, cll = np.loadtxt('data/nlkk.dat', unpack=True)
ll = ll.astype(int)
cl = np.zeros(ll[-1] + 1)
cl[ll[0]:] = cll
nl = np.zeros(ll[-1] + 1)
nl[ll[0]:] = nll
wl = (cl - nl) / np.maximum(cl, np.ones_like(cl) * 1E-10)
alm_planck = hp.almxfl(alm_planck, wl)
map_planck = hp.alm2map(alm_planck, nside, verbose=False)
map_delta = f.mp
#alm_delta = hp.map2alm(map_delta)
#alm_delta = hp.almxfl(alm_delta, wl)
#map_delta = hp.alm2map(alm_delta, nside, verbose=False)

ut.plot_lotss_map(map_planck * mask_lofar * mask_planck,
                  mask=mask_lofar * mask_planck,
                  title=r'$\kappa$',
                  fname='plots/kappa.pdf')
ut.plot_lotss_map(p_map0p1,
                  mask=mask_lofar,
                  title=r'Depth, $I_{\rm cut}=0.1\,{\rm MJy}$',
                  fname='plots/depth_0p1.pdf')
ut.plot_lotss_map(p_map2,
                  mask=mask_lofar,
Exemple #42
0
def g2eb(g1, g2):
    nside = gnside(g1)
    (ae, ab) = hp.map2alm_spin((g1, g2), 2)
    ke = hp.alm2map(ae, nside, pol=False)
    kb = hp.alm2map(ab, nside, pol=False)
    return ke, kb
Exemple #43
0
 def get_sim_tmap(self, idx):
     T = hp.alm2map(hp.almxfl(cmb_len_ffp10.get_sim_tlm(idx), self.transf), self.nside)
     nlevt_pix = self.nlevt / np.sqrt(hp.nside2pixarea(self.nside, degrees=True)) / 60.
     T += self.pix_libphas.get_sim(idx, idf=0) * nlevt_pix
     return T
    assert (lmax_in >
            lmax_out), "New lmax must be less than lmax of input alms"
    alm_out = np.zeros(hp.Alm.getsize(lmax_out), dtype=np.complex)
    for il in xrange(0, lmax_out + 1):
        alm_out[hp.Alm.getidx(lmax_out, il,
                              np.arange(0, il + 1))] = alm_in[hp.Alm.getidx(
                                  lmax_in, il, np.arange(0, il + 1))]
    return alm_out


# Usage:
new_lmax = 8000
alm = lower_lmax(alm, new_lmax)

# Make map from alms
tmap = hp.alm2map(alm, nside)

# Look at map interactively
hp.mollzoom(tmap)

# SPT-only products:
# Read filter transfer functions
tlm = hp.read_alm('tlm_150GHz_lmax10000.fits')

# Read beam file
bl = np.fromfile('bl_gauss_fwhm1p75am_lmax10000.bin')

# Create new beam:
fwhm_arcmin_new = 1.85  # FWHM of new beam
bl_new = hp.gauss_beam(fwhm_arcmin_new / 60. * np.pi / 180., lmax=10000)
# Initialize data arrays
D = np.zeros((1 + len(iterations), nDipoles))
#raAvg = np.zeros((len(lats),nDipoles))
#covs  = np.zeros((len(lats),nDipoles))
raAvg = np.zeros((len(lats), len(fovs), nDipoles))
covs = np.zeros((len(lats), len(fovs), nDipoles))
noM = np.zeros(nDipoles)

# Loop over dipoles orientations
for dipole in range(0, nDipoles):

    almtemp = h.map2alm(np.zeros(12 * nside * nside), lmax=lmax)
    almtemp[h.sphtfunc.Alm.getidx(lmax=lmax, l=1, m=0)] = dipole
    almtemp[h.sphtfunc.Alm.getidx(lmax=lmax, l=1, m=1)] = 10 - dipole
    truemap = h.alm2map(almtemp, nside, lmax=lmax)
    truemap *= strength / max(truemap)

    print "========="
    print "Dipole %d" % dipole
    maxi, maxang, mini, minang = GetMaxMin(truemap)
    D[0, dipole] = 90. - maxang[0] / degree

    # Strength observed with method after i iterations
    # Loop over Niterations
    for j, iteration in enumerate(iterations):
        print "  Observed"
        #r=h.read_map("dipoles/CR_dipole%02d_64_360_iteration%d.fits.gz" % (dipole,iteration))
        #r=h.read_map("/data/scratch/fiorino/hawc/local/dipole%02d-wholesky/CR_HAWC_64_360_iteration%d.fits" % (dipole,iteration))
        r = h.read_map(
            "/data/scratch/fiorino/hawc/local/dipole%02d-boost10-hawcsky/CR_HAWC_64_360_iteration%d.fits"
Exemple #46
0
def almPlots(path,
             outDir,
             bundle,
             nside=128,
             lmax=500,
             filterband='i',
             raRange=[-50, 50],
             decRange=[-65, 5],
             subsetsToConsider=[[130, 165], [240, 300]],
             showPlots=True):
    """

    Plot the skymaps/cartview plots corresponding to alms with specified l-ranges. 
    Automatically creates the output directories and saves the plots.

    Required Parameters
    -------------------
      * path: str: path to the main directory where output directory is saved
      * outDir: str: name of the main output directory
      * bundle: metricBundle object.
    
    Optional Parameters
    -------------------
      * nside: int: HEALpix resolution parameter. Default: 128
      * lmax: int: upper limit on the multipole. Default: 500
      * filterBand: str: any one of 'u', 'g', 'r', 'i', 'z', 'y'. Default: 'i'
      * raRange: float array: range of right ascention (in degrees) to consider in cartview plot; only useful when 
                              cartview= True. Default: [-50,50]
      * decRange: float array: range of declination (in degrees) to consider in cartview plot; only useful when 
                               cartview= True. Default: [-65,5]
      * subsetsToConsider: array of int arrays: l-ranges to consider, e.g. use [[50, 100]] to consider 50<l<100.
                                                Currently built to handle five subsets (= number of colors built in).
                                                Default: [[130,165], [240, 300]]
      * showPlots: boolean: set to True if want to show figures. Default: True

    """
    # set up the output directory
    outDir2 = 'almAnalysisPlots_%s<RA<%s_%s<Dec<%s' % (
        raRange[0], raRange[1], decRange[0], decRange[1])
    if not os.path.exists('%s%s/%s' % (path, outDir, outDir2)):
        os.makedirs('%s%s/%s' % (path, outDir, outDir2))

    outDir3 = 'almSkymaps'
    if not os.path.exists('%s%s/%s/%s' % (path, outDir, outDir2, outDir3)):
        os.makedirs('%s%s/%s/%s' % (path, outDir, outDir2, outDir3))

    outDir4 = 'almCartviewMaps'
    if not os.path.exists('%s%s/%s/%s' % (path, outDir, outDir2, outDir4)):
        os.makedirs('%s%s/%s/%s' % (path, outDir, outDir2, outDir4))

    # ------------------------------------------------------------------------
    # In order to consider the out-of-survey area as with data=0,  assign the masked region of the
    # skymaps the median of the in-survey data, and then subtract the median off the entire survey.
    # Add the median back later. This gets rid of the massive fake monopole and allows reconstructing
    # the full skymap from components.
    surveyMedianDict = {}
    surveyStdDict = {}
    for dither in bundle:
        inSurvey = np.where(bundle[dither].metricValues.mask == False)[0]
        outSurvey = np.where(bundle[dither].metricValues.mask == True)[0]
        bundle[dither].metricValues.mask[outSurvey] = False
        # data pixels
        surveyMedian = np.median(bundle[dither].metricValues.data[inSurvey])
        surveyStd = np.std(bundle[dither].metricValues.data[inSurvey])
        # assign data[outOfSurvey]= medianData[inSurvey]
        bundle[dither].metricValues.data[outSurvey] = surveyMedian
        # subtract median off
        bundle[dither].metricValues.data[:] = bundle[
            dither].metricValues.data[:] - surveyMedian
        # save median for later use
        surveyMedianDict[dither] = surveyMedian
        surveyStdDict[dither] = surveyStd

    # ------------------------------------------------------------------------
    # now find the alms correponding to the map.
    for dither in bundle:
        array = hp.anafast(bundle[dither].metricValues.filled(
            bundle[dither].slicer.badval),
                           alm=True,
                           lmax=500)
        cl = array[0]
        alm = array[1]
        l = np.arange(len(cl))

        lsubsets = {}
        colorArray = ['y', 'r', 'g', 'm', 'c']
        color = {}
        for case in range(len(subsetsToConsider)):
            lsubsets[case] = ((l > subsetsToConsider[case][0]) &
                              (l < subsetsToConsider[case][1]))
            color[case] = colorArray[case]

        # ------------------------------------------------------------------------
        # plot things out
        plt.clf()
        plt.plot(l, (cl * l * (l + 1)) / (2.0 * np.pi), color='b')
        for key in list(lsubsets.keys()):
            plt.plot(l[lsubsets[key]],
                     (cl[lsubsets[key]] * l[lsubsets[key]] *
                      (l[lsubsets[key]] + 1)) / (2.0 * np.pi),
                     color=color[key])
        plt.title(dither)
        plt.xlabel('$\ell$')
        plt.ylabel(r'$\ell(\ell+1)C_\ell/(2\pi)$')
        filename = 'cls_%s.png' % (dither)
        plt.savefig('%s%s/%s/%s' % (path, outDir, outDir2, filename),
                    format='png',
                    bbox_inches='tight')

        if showPlots:
            plt.show()
        else:
            plt.close()

        surveyMedian = surveyMedianDict[dither]
        surveyStd = surveyStdDict[dither]

        # ------------------------------------------------------------------------
        # plot full-sky-alm plots first
        nTicks = 5
        colorMin = surveyMedian - 1.5 * surveyStd
        colorMax = surveyMedian + 1.5 * surveyStd
        increment = (colorMax - colorMin) / float(nTicks)
        ticks = np.arange(colorMin + increment, colorMax, increment)

        # full skymap
        hp.mollview(hp.alm2map(alm, nside=nside, lmax=lmax) + surveyMedian,
                    flip='astro',
                    rot=(0, 0, 0),
                    min=colorMin,
                    max=colorMax,
                    title='',
                    cbar=False)
        hp.graticule(dpar=20, dmer=20, verbose=False)
        plt.title('Full Map')

        ax = plt.gca()
        im = ax.get_images()[0]

        fig = plt.gcf()
        cbaxes = fig.add_axes([0.1, 0.015, 0.8,
                               0.04])  # [left, bottom, width, height]
        cb = plt.colorbar(im,
                          orientation='horizontal',
                          format='%.2f',
                          ticks=ticks,
                          cax=cbaxes)
        cb.set_label('$%s$-band Coadded Depth' % filterband)
        filename = 'alm_FullMap_%s.png' % (dither)
        plt.savefig('%s%s/%s/%s/%s' %
                    (path, outDir, outDir2, outDir3, filename),
                    format='png',
                    bbox_inches='tight')

        # full cartview
        hp.cartview(hp.alm2map(alm, nside=nside, lmax=lmax) + surveyMedian,
                    lonra=raRange,
                    latra=decRange,
                    flip='astro',
                    min=colorMin,
                    max=colorMax,
                    title='',
                    cbar=False)
        hp.graticule(dpar=20, dmer=20, verbose=False)
        plt.title('Full Map')
        ax = plt.gca()
        im = ax.get_images()[0]
        fig = plt.gcf()
        cbaxes = fig.add_axes([0.1, -0.05, 0.8,
                               0.04])  # [left, bottom, width, height]
        cb = plt.colorbar(im,
                          orientation='horizontal',
                          format='%.2f',
                          ticks=ticks,
                          cax=cbaxes)
        cb.set_label('$%s$-band Coadded Depth' % filterband)
        filename = 'alm_Cartview_FullMap_%s.png' % (dither)
        plt.savefig('%s%s/%s/%s/%s' %
                    (path, outDir, outDir2, outDir4, filename),
                    format='png',
                    bbox_inches='tight')

        # prepare for the skymaps for l-range subsets
        colorMin = surveyMedian - 0.1 * surveyStd
        colorMax = surveyMedian + 0.1 * surveyStd
        increment = (colorMax - colorMin) / float(nTicks)
        increment = 1.15 * increment
        ticks = np.arange(colorMin + increment, colorMax, increment)

        # ------------------------------------------------------------------------
        # consider each l-range
        for case in list(lsubsets.keys()):
            index = []
            lowLim = subsetsToConsider[case][0]
            upLim = subsetsToConsider[case][1]
            for ll in np.arange(lowLim, upLim + 1):
                for mm in np.arange(0, ll + 1):
                    index.append(hp.Alm.getidx(lmax=lmax, l=ll, m=mm))
            alms1 = alm.copy()
            alms1.fill(0)
            alms1[index] = alm[index]  # an unmasked array

            # plot the skymap
            hp.mollview(hp.alm2map(alms1, nside=nside, lmax=lmax) +
                        surveyMedian,
                        flip='astro',
                        rot=(0, 0, 0),
                        min=colorMin,
                        max=colorMax,
                        title='',
                        cbar=False)
            hp.graticule(dpar=20, dmer=20, verbose=False)
            plt.title('%s<$\ell$<%s' % (lowLim, upLim))
            ax = plt.gca()
            im = ax.get_images()[0]
            fig = plt.gcf()
            cbaxes = fig.add_axes([0.1, 0.015, 0.8,
                                   0.04])  # [left, bottom, width, height]
            cb = plt.colorbar(im,
                              orientation='horizontal',
                              format='%.3f',
                              ticks=ticks,
                              cax=cbaxes)
            cb.set_label('$%s$-band Coadded Depth' % filterband)
            filename = 'almSkymap_%s<l<%s_%s.png' % (lowLim, upLim, dither)
            plt.savefig('%s%s/%s/%s/%s' %
                        (path, outDir, outDir2, outDir3, filename),
                        format='png',
                        bbox_inches='tight')

            # plot cartview
            hp.cartview(hp.alm2map(alms1, nside=nside, lmax=lmax) +
                        surveyMedian,
                        lonra=raRange,
                        latra=decRange,
                        flip='astro',
                        min=colorMin,
                        max=colorMax,
                        title='',
                        cbar=False)
            hp.graticule(dpar=20, dmer=20, verbose=False)
            plt.title('%s<$\ell$<%s' % (lowLim, upLim))

            ax = plt.gca()
            im = ax.get_images()[0]
            fig = plt.gcf()
            cbaxes = fig.add_axes([0.1, -0.05, 0.8,
                                   0.04])  # [left, bottom, width, height]
            cb = plt.colorbar(im,
                              orientation='horizontal',
                              format='%.3f',
                              ticks=ticks,
                              cax=cbaxes)
            cb.set_label('$%s$-band Coadded Depth' % filterband)
            filename = 'almCartview_%s<l<%s_%s.png' % (lowLim, upLim, dither)
            plt.savefig('%s%s/%s/%s/%s' %
                        (path, outDir, outDir2, outDir4, filename),
                        format='png',
                        bbox_inches='tight')

        if showPlots:
            plt.show()
        else:
            plt.close('all')
Exemple #47
0
def rotate_map_to_axis(m, ra, dec, nest=False, method='direct'):
    """Rotate a sky map to place a given line of sight on the +z axis.

    Parameters
    ----------

    m : np.ndarray
        The input HEALPix array.

    ra : float
        Right ascension of axis in radians.

        To specify the axis in geocentric coordinates, supply ra=(lon + gmst),
        where lon is the geocentric longitude and gmst is the Greenwich mean
        sidereal time in radians.

    dec : float
        Declination of axis in radians.

        To specify the axis in geocentric coordinates, supply dec=lat,
        where lat is the geocentric latitude in radians.

    nest : bool, default=False
        Indicates whether the input sky map is in nested rather than
        ring-indexed HEALPix coordinates (default: ring).

    method : 'direct' or 'fft'
        Select whether to use spherical harmonic transformation ('fft') or
        direct coordinate transformation ('direct')

    Returns
    -------

    m_rotated : np.ndarray
        The rotated HEALPix array.
    """
    npix = len(m)
    nside = hp.npix2nside(npix)

    theta = 0.5 * np.pi - dec
    phi = ra

    if method == 'fft':
        if nest:
            m = hp.reorder(m, n2r=True)
        alm = hp.map2alm(m)
        hp.rotate_alm(alm, -phi, -theta, 0.0)
        ret = hp.alm2map(alm, nside, verbose=False)
        if nest:
            ret = hp.reorder(ret, r2n=True)
    elif method == 'direct':
        R = hp.Rotator(
            rot=np.asarray([0, theta, -phi]),
            deg=False, inv=False, eulertype='Y')
        theta, phi = hp.pix2ang(nside, np.arange(npix), nest=nest)
        ipix = hp.ang2pix(nside, *R(theta, phi), nest=nest)
        ret = m[ipix]
    else:
        raise ValueError('Unrecognized method: {0}'.format(method))

    return ret
Exemple #48
0
    def get_tmap(self, idx):
        """Real-space Wiener filtered tmap.

        \sum_{lm} MAP_talm _0 Ylm(n).
        """
        return hp.alm2map(self.ivfs.get_sim_tmliklm(idx), self.nside)
def degrade_maps(qml_nside, maps_in, pol, qml_mask=None):
    """cut high multipoles of input map and degrade it to low resolution
    Parameters
    ----------
    nsimu:integer
        mumber of samples

    qml_nside : integer
       nisde of  low multipoles maps

    mapsA, mapsB: numpy.ndarray
             
        mapsA noise maps of chanel A
        mapsB noise maps of chanel B(optional)

    Returns
    ----------
    maps:
        Return a degrade maps with Nside = qml_nside
    """
    print()
    print("down grade maps to Nside = %d" % qml_nside)
    print(maps_in.shape)
    if len(maps_in.shape) == 2:
        nsimu = 1
        maps_in = np.array([maps_in])
    else:
        nsimu = maps_in.shape[0]
    nside = hp.npix2nside(maps_in.shape[-1])
    Slmax_old = 3 * nside
    Slmax_new = 3 * qml_nside
    print("nsimu = %d" % nsimu)
    print("nside = %d" % nside)

    npix = hp.nside2npix(qml_nside)
    if qml_mask == ():
        qml_mask = np.ones(npix, bool)
    else:
        if npix != len(qml_mask):
            print("The nside of qml_mask inconsistent with qml_nside.")

    ALM = hp.Alm
    maps = []
    for n in np.arange(nsimu):
        progress_bar(n, nsimu)
        n1 = n + 1
        #map_out = hp.read_map(maps_dir+"%d.fits"%n1,field=(0,1,2),dtype=float,verbose=0)
        #map_in = hp.read_map(maps_dir+"%d.fits"%n1,field=(0,1,2),dtype=np.float64,verbose=0)
        map_in = maps_in[n]

        alm_old = hp.map2alm(map_in,
                             lmax=Slmax_old,
                             pol=pol,
                             use_weights=True,
                             iter=3)
        alm_new = np.zeros_like(np.array(alm_old)[:, :ALM.getsize(Slmax_new)])
        for l in np.arange(Slmax_new + 1):
            for m in np.arange(l + 1):
                idx_new = ALM.getidx(Slmax_new, l, m)
                idx_old = ALM.getidx(Slmax_old, l, m)
                if l <= qml_nside:
                    alm_new[:, idx_new] = alm_old[:, idx_old]
                elif l <= Slmax_new:
                    alm_new[:, idx_new] = alm_old[:, idx_old] * 0.5 * (
                        1 + np.sin(l * np.pi / 2 / qml_nside))
        map_out = hp.alm2map(alm_new, nside=qml_nside, pixwin=False)
        map_out = map_out * qml_mask

        # hp.write_map(output_dir+"/map_out_%d.fits"%n1,map_out,dtype=np.float64)
        # hp.mollview(map_out[1], cmap=plt.cm.jet, title='Q map output')
        # plt.savefig(output_dir+'/map_out_%d.eps'%n1,bbox_inches='tight',pad_inches=0.1)

        maps.append(map_out)

    maps = np.array(maps)
    return maps
Exemple #50
0
            if temp2 > 0.0:
                diffCRmap[i] = temp1 / temp2 - CRmap[i]

        # remove m=0 multipole moments :

        #LMAX=180
        LMAX = 8
        out = H.anafast(diffCRmap, alm=True, lmax=LMAX)

        for i in range(0, LMAX + 1):

            index = H.sphtfunc.Alm.getidx(LMAX, i, 0)
            out[1][index] = 0.0

        diffCRmap = H.alm2map(out[1], nside, lmax=LMAX)

        # calculate new norm

        for timeidx in range(minstep, maxstep):

            temp1 = 0.0
            temp2 = 0.0

            beta = timeidx / (1. * Ntimestep) * np.pi * 2 + HAWClon1

            cb = np.cos(beta)
            sb = np.sin(beta)

            clat = np.cos(HAWClat1)
            slat = np.sin(HAWClat1)
Exemple #51
0
    def test_scan_spole(self):
        '''
        Perform a (low resolution) scan and see if TOD make sense.
        '''

        mlen = 10 * 60 
        rot_period = 120
        mmax = 2        
        ra0=-10
        dec0=-57.5
        fwhm = 200
        nside = 256
        az_throw = 10
        polang = 20.

        ces_opts = dict(ra0=ra0, dec0=dec0, az_throw=az_throw,
                        scan_speed=2.)
        
        scs = ScanStrategy(duration=mlen, sample_rate=10, location='spole')

        # Create a 1 x 1 square grid of Gaussian beams.
        scs.create_focal_plane(nrow=1, ncol=1, fov=4,
                               lmax=self.lmax, fwhm=fwhm,
                               polang=polang)
        beam = scs.beams[0][0]
        scs.init_detpair(self.alm, beam, nside_spin=nside,
                                   max_spin=mmax)
        scs.partition_mission()

        chunk = scs.chunks[0]
        ces_opts.update(chunk)

        # Populate boresight.
        scs.constant_el_scan(**ces_opts)

        # Test without returning anything (default behaviour).
        scs.scan(beam, **chunk)

        tod = scs.scan(beam, return_tod=True, **chunk)
        self.assertEqual(tod.size, chunk['end'] - chunk['start'])

        pix, nside_out, pa, hwp_ang = scs.scan(beam, return_point=True,
                                           **chunk)
        self.assertEqual(pix.size, tod.size)
        self.assertEqual(nside, nside_out)
        self.assertEqual(pa.size, tod.size)
        self.assertEqual(hwp_ang, 0)

        # Turn on HWP
        scs.set_hwp_mod(mode='continuous', freq=1., start_ang=0)
        scs.rotate_hwp(**chunk)
        tod2, pix2, nside_out2, pa2, hwp_ang2 = scs.scan(beam,
                        return_tod=True, return_point=True, **chunk)
        np.testing.assert_almost_equal(pix, pix2)
        np.testing.assert_almost_equal(pix, pix2)
        np.testing.assert_almost_equal(pa, pa2)
        self.assertTrue(np.any(np.not_equal(tod, tod2)), True)
        self.assertEqual(nside_out, nside_out2)
        self.assertEqual(hwp_ang2.size, tod.size)

        # Construct TOD manually.
        polang = beam.polang
        maps_sm = np.asarray(hp.alm2map(self.alm, nside, verbose=False,
                                        fwhm=np.radians(beam.fwhm / 60.)))

        np.testing.assert_almost_equal(maps_sm[0],
                                       scs.spinmaps['main_beam']['maps'][0][0])
        q = np.real(scs.spinmaps['main_beam']['maps'][1][mmax + 2])
        u = np.imag(scs.spinmaps['main_beam']['maps'][1][mmax + 2])
        np.testing.assert_almost_equal(maps_sm[1], q)
        np.testing.assert_almost_equal(maps_sm[2], u)

        tod_man = maps_sm[0][pix]
        tod_man += (maps_sm[1][pix] \
                    * np.cos(-2 * np.radians(pa + polang + 2 * hwp_ang2)))
        tod_man += (maps_sm[2][pix] \
                    * np.sin(-2 * np.radians(pa + polang + 2 * hwp_ang2)))

        np.testing.assert_almost_equal(tod2, tod_man)
Exemple #52
0
def main():

    d, cls_, s_obs = utils.generate_sky_map()
    _, cls_others, _ = utils.generate_sky_map()
    config.observations = d
    group_mat = utils.compute_grouping_matrix()

    alm = np.random.normal(size=config.N) + 1j * np.random.normal(size=config.N)
    alm_origin = alm.copy()
    alm.imag[:config.L_MAX_SCALARS+1] = 0
    alm[[0, 1, config.L_MAX_SCALARS+1]] = 0
    print(alm)
    print(alm_origin)

    A = utils.get_Ylm()
    A_transp = utils.get_Ylm_transp()
    map1 = utils.sph_transform_by_hand(alm, A)
    map2 = hp.alm2map(alm, nside=config.NSIDE)
    print(map1 - map2)
    map2_bis = hp.alm2map(alm_origin, nside=config.NSIDE)
    print(map2 - map2_bis)

    conjgrad3 = conjugateGradient.CG3()
    conjgrad4 = conjugateGradient.CG4(group_mat, A, A_transp)


    #testeur = np.random.normal(size=(config.L_MAX_SCALARS+1)**2) + 1j*np.random.normal(size=(config.L_MAX_SCALARS+1)**2)
    #testeur.imag[:config.L_MAX_SCALARS + 1] = 0
    #testeur[[0, 1, config.L_MAX_SCALARS + 1]] = 0
    #m = np.dot(group_mat.T, testeur)
    #m2 = conjugateGradient.flatten_map4(testeur[config.N - (config.L_MAX_SCALARS + 1):])
    #print(m)
    #print(m2)

    u = np.concatenate((2*np.ones(config.N - (config.L_MAX_SCALARS + 2)), np.ones(config.L_MAX_SCALARS-1),
                    3*np.ones(config.N - (config.L_MAX_SCALARS + 2))))

    u = np.concatenate((np.random.normal(size=config.N - (config.L_MAX_SCALARS + 2)),
                        np.random.normal(size=config.L_MAX_SCALARS-1),
                    np.random.normal(size=config.N - (config.L_MAX_SCALARS + 2))))

    #print(conjugateGradient.unflat_map_to_pix4(u) - np.dot(group_mat, u)[config.N - (config.L_MAX_SCALARS +1):])
    m1 = np.dot(A_transp, np.dot(A, np.dot(group_mat, u)))
    m2 = hp.map2alm(hp.alm2map(conjugateGradient.unflat_map_to_pix4(u), nside=config.NSIDE), lmax=config.L_MAX_SCALARS)
    print(m2-m1[config.N-(config.L_MAX_SCALARS+2)+1:])
    print(m1)

    #print(A_transp.shape)
    #e1 = np.dot(group_mat.T, np.dot(A_transp,d))
    #e2 = hp.map2alm(d, lmax=config.L_MAX_SCALARS)
    #print(e1)
    #print(e2)
    #print(e1[config.N - (config.L_MAX_SCALARS + 1):] - e2)
    #print(e1 - e2)




    u = np.concatenate((2*np.ones(config.N - (config.L_MAX_SCALARS + 2)), np.ones(config.L_MAX_SCALARS-1),
                    3*np.ones(config.N - (config.L_MAX_SCALARS + 2))))

    #u = np.concatenate((np.random.normal(size=config.N - (config.L_MAX_SCALARS + 2)), np.random.normal(size=config.L_MAX_SCALARS-1),
    #                np.random.normal(size=config.N - (config.L_MAX_SCALARS + 2))))

    #u[0] = 0
    #u[config.N - config.L_MAX_SCALARS] = 0
    #u[config.N - config.L_MAX_SCALARS +1] = 0
    #u[config.N] = 0

    degroup_mat = utils.compute_grouping_inverse()
    e = np.dot(group_mat, u)
    print(e[74+4])
    print(e[74 - (config.N - (config.L_MAX_SCALARS +1) + 2) + 1 - 4])
    print(74 - (config.N - (config.L_MAX_SCALARS +1) + 2) + 1 - 4)
    v = np.dot(degroup_mat, np.dot(group_mat, u))
    print(v)
    print((config.N - (config.L_MAX_SCALARS +1) + 2) + 1 - 4)
    print(np.dot(group_mat, u))
    #e = np.dot(degroup_mat, np.dot(A_transp, np.dot(A, np.dot(group_mat, u))))
    #print(e - u)
    #print(u)
    #print("\n")
    #print(np.vstack((u, e)).T)


    """
    extended_cls = [cl for l in range(config.L_MAX_SCALARS + 1) for cl in cls_[l:]]
    #extended_cls_real = (extended_cls[:(config.L_MAX_SCALARS + 1)] + extended_cls[(config.L_MAX_SCALARS + 2):])[2:]
    #extended_cls_imag = extended_cls[(config.L_MAX_SCALARS + 2):]
    #extended_cls = np.array(extended_cls_real + extended_cls_imag)
    diag = extended_cls
    denom_second = 1/np.array(extended_cls)
    denom_first = 1/np.array(extended_cls[config.L_MAX_SCALARS+1:])
    denom_second[[0, 1, config.L_MAX_SCALARS + 1]] = 0
    denom_first[0] = 0
    inverse_C = np.concatenate((denom_first, denom_second))

    cg_Matrix = np.diag(inverse_C) + M
    print(cg_Matrix)
    inv_Matrix = np.linalg.solve(cg_Matrix, np.ones(81))
    print(inv_Matrix[Int, Int])
    """
    conjgrad2 = conjugateGradient.CG2()
    conjgrad1 = conjugateGradient.CG()
    conjgrad3 = conjugateGradient.CG3()
    conjgrad4 = conjugateGradient.CG4(group_mat, A, A_transp)
    true_mean2, err = conjgrad2.compute_mean(d, cls_others)
    if err != 0:
        print("Conjugate gradient did not converge")
        return None

    true_mean3, err = conjgrad3.compute_mean(d, cls_others)
    if err != 0:
        print("Conjugate gradient did not converge")
        return None

    true_mean4, err = conjgrad4.compute_mean(d, cls_others)
    if err != 0:
        print("Conjugate gradient did not converge")
        return None


    variance_int1, err = conjgrad1.get_var(Int)


    variance_int, err = conjgrad2.get_var(Int)
    variance_int2 = variance_int.real
    if err != 0:
        print("Conjugate gradient did not converge for variance")
        return None

    variance_int3, err = conjgrad3.get_var(Int)
    variance_int3 = variance_int.real
    if err != 0:
        print("Conjugate gradient did not converge for variance")
        return None

    """
    variance_true, precision_true, mat, A = utils.compute_variance_matrix(cls_others)
    chol_var = np.linalg.cholesky(variance_true)
    chol_precision = np.linalg.cholesky(precision_true)

    u = hp.map2alm((1/config.noise_covar)*d, lmax=config.L_MAX_SCALARS)
    u = conjugateGradient.flatten_map3(u)
    mean = np.dot(variance_true, u)

    true_mean2 = conjugateGradient.flatten_map3(unflat_map_to_pix(true_mean2))
    print("\n")
    print(mean[Int])
    print(true_mean2[Int])
    print(true_mean4[Int])
    print(true_mean3[Int])
    print("\n")
    print(variance_int1)
    print(variance_int2)
    print(variance_int3)
    print(variance_true[Int, Int])
    print(conjgrad3.get_var(Int))
    print(conjgrad4.get_var(Int))

    h_cg2 = []
    for i in range(1000):
        print(i)
        sol, err = conjgrad2.run(d, cls_others)
        h_cg2.append(sol)


    h_cg1 = []
    for i in range(1000):
        print(i)
        sol, err = conjgrad1.run(d, cls_others)
        h_cg1.append(mala.flatten_map(sol))


    h_cg3 = []
    for i in range(1000):
        print(i)
        sol, err = conjgrad3.run(d, cls_others)
        h_cg3.append(sol)
        
    
    h_cg4 = []
    for i in range(1000):
        print(i)
        sol, err = conjgrad4.run(d, cls_others)
        h_cg4.append(sol)

    h_chol = []
    true_mean = np.dot(variance_true,
                      conjugateGradient.flatten_map3(hp.sphtfunc.map2alm((1 / config.noise_covar) * d, lmax=config.L_MAX_SCALARS)))
    for i in range(1000):
        print(i)
        #v = np.dot(chol_var, np.random.normal(size = 77)) + true_mean
        #omega0 = np.sqrt(1/conjgrad3.cls)*np.random.normal(size=len(conjgrad3.cls))
        #omega1 = hp.sphtfunc.map2alm((1/np.sqrt(config.noise_covar))*np.random.normal(size=config.Npix)
        #                             ,lmax=config.L_MAX_SCALARS)
        #omega1 = np.dot(degroup_mat, np.dot(A_transp, (1 / np.sqrt(config.noise_covar))*np.random.normal(size=config.Npix)))
        #u = hp.sphtfunc.map2alm(((1/config.noise_covar) * d), lmax=config.L_MAX_SCALARS)
        u = np.dot(degroup_mat,np.dot(A_transp, (1 / config.noise_covar) * d))
        #b = omega0 + conjugateGradient.flatten_map3(u+omega1)
        #b = omega0 + u + omega1
        b = np.dot(chol_precision, np.random.normal(size = precision_true.shape[1])) + u
        v = np.dot(variance_true, b)
        h_chol.append(v)



    #h, estim_mean = gradient_ascent(d, cls_)
    #h1 = np.array(h_cg1)
    #h2 = np.array(h_cg2)
    h4 = np.array(h_cg4)
    hchol = np.array(h_chol)
    stdd2 = np.std(hchol[:, Int])
    #emp_var = np.var(h[:, Int])
    #print(h[:, Int])
    #plt.hist(h1[:, Int], bins=25, alpha=0.2, density=True, label="Old")
    #plt.hist(h2[:, Int], bins=25, alpha=0.2, density=True, label="New")
    plt.hist(h4[:, Int], bins=15, alpha=0.5, density=True, label="CG4")
    plt.hist(hchol[:, Int], bins=15, alpha=0.5, density=True, label="Cholesky")
    plt.axvline(x=true_mean4[Int], color="k", linewidth=1)
    plt.axvline(x=true_mean4[Int] + np.sqrt(variance_true[Int, Int]), color="k", linewidth=1)
    plt.axvline(x=true_mean4[Int] - np.sqrt(variance_true[Int, Int]), color="k", linewidth=1)
    plt.axvline(x=true_mean4[Int] + stdd2, color="r", linewidth=1)
    plt.axvline(x=true_mean4[Int] - stdd2, color="r", linewidth=1)
    plt.legend(loc="upper right")
    #plt.axvline(x=true_mean2[Int] + np.sqrt(emp_var), color="red", linewidth=1)
    #plt.axvline(x=true_mean2[Int] - np.sqrt(emp_var), color="red", linewidth=1)
    plt.show()

    """

    #ICI POUR MALA !!!
    grad_cst = utils.compute_gradient_log_constant_part(d)
    #history, s  = mala.mala3(cls_others, d, grad_cst)
    print("\n")
    print("\n")
    print("\n")
    #history, s = mala.mala_good(cls_others, d, grad_cst, unadjusted=False)
    history, s = crankNicolson_good(cls_, d)
    h = np.array(history)[:, Int]
    #h_r = np.array(history_r)[:, Int]
    plt.plot(h)
    #plt.plot(h_r)
    plt.axhline(y=true_mean4[Int], color='green', linewidth=1)
    plt.axhline(y=true_mean4[Int] + np.sqrt(variance_int), color='green', linewidth=1)
    plt.axhline(y=true_mean4[Int] - np.sqrt(variance_int), color='green', linewidth=1)
    plt.show()
    plt.close()
    #emp_var = np.var(h)
    #plt.hist(h, label="ULA", density=True, alpha=0.5)
    #plt.hist(np.array(h_cg4)[:, Int], bins=25, label="CG", density=True, alpha=0.5)
    #plt.axvline(x=true_mean4[Int], color='red', linewidth=1)
    #plt.axvline(x=true_mean4[Int] + np.sqrt(variance_int), color='green', linewidth=1)
    #plt.axvline(x=true_mean4[Int] - np.sqrt(variance_int), color='green', linewidth=1)
    #plt.axvline(x=true_mean4[Int] + np.sqrt(emp_var), color='red', linewidth=1)
    #plt.axvline(x=true_mean4[Int] - np.sqrt(emp_var), color='red', linewidth=1)
    #plt.legend(loc="upper right")
    #plt.show()
    #plt.close()
    #print(variance_int)

    """
    #Ici pour gradient !!!
    history, s = gradient_ascent_good(d, cls_others)
    h = np.array(history)
    plt.plot(h[:, Int])
    plt.axhline(y=true_mean4[Int], color='red', linewidth=1)
    plt.axhline(y=true_mean3[Int], color='green', linewidth=1)
    plt.show()
    plt.close()
    print(h[0, Int])
    print(history[0][Int])
    print(np.array(history).shape)
    print(history)
    """
    """
Exemple #53
0
def scan_atacama(lmax=700,
                 mmax=5,
                 fwhm=40,
                 mlen=48 * 60 * 60,
                 nrow=3,
                 ncol=3,
                 fov=5.0,
                 ra0=[-10, 170],
                 dec0=[-57.5, 0],
                 el_min=45.,
                 cut_el_min=False,
                 az_throw=50,
                 scan_speed=1,
                 rot_period=0,
                 hwp_mode='continuous'):
    '''
    Simulates 48h of an atacama-based telescope with a 3 x 3 grid
    of Gaussian beams pairs. Prefers to scan the bicep patch but
    will try to scan the ABS_B patch if the first is not visible.

    Keyword arguments
    ---------

    lmax : int
        bandlimit (default : 700)
    mmax : int
        assumed azimuthal bandlimit beams (symmetric in this example
        so 2 would suffice) (default : 5)
    fwhm : float
        The beam FWHM in arcmin (default : 40)
    mlen : int
        The mission length [seconds] (default : 48 * 60 * 60)
    nrow : int
        Number of detectors along row direction (default : 3)
    ncol : int
        Number of detectors along column direction (default : 3)
    fov : float
        The field of view in degrees (default : 5.0)
    ra0 : float, array-like
        Ra coord of centre region (default : [-10., 85.])
    dec0 : float, array-like
        Ra coord of centre region (default : [-57.5, 0.])
    el_min : float
        Minimum elevation range [deg] (default : 45)
    cut_el_min: bool
            If True, excludes timelines where el would be less than el_min
    az_throw : float
        Scan width in azimuth (in degrees) (default : 10)
    scan_speed : float
        Scan speed in deg/s (default : 1)
    rot_period : float
        The instrument rotation period in sec
        (default : 600)
    hwp_mode : str, None
        HWP modulation mode, either "continuous",
        "stepped" or None. Use freq of 1 or 1/10800 Hz
        respectively (default : continuous)
    '''

    # hardcoded mission length

    # Create LCDM realization
    ell, cls = get_cls()
    np.random.seed(25)  # make sure all MPI ranks use the same seed
    alm = hp.synalm(cls, lmax=lmax, new=True, verbose=True)  # uK

    ac = ScanStrategy(
        mlen,  # mission duration in sec.
        sample_rate=12.01,  # sample rate in Hz
        location='atacama')  # Instrument at south pole

    # Create a 3 x 3 square grid of Gaussian beams
    ac.create_focal_plane(nrow=nrow, ncol=ncol, fov=fov, lmax=lmax, fwhm=fwhm)

    # calculate tods in two chunks
    ac.partition_mission(0.5 * ac.mlen * ac.fsamp)

    # Allocate and assign parameters for mapmaking
    ac.allocate_maps(nside=256)

    # set instrument rotation
    ac.set_instr_rot(period=rot_period)

    # Set HWP rotation
    if hwp_mode == 'continuous':
        ac.set_hwp_mod(mode='continuous', freq=1.)
    elif hwp_mode == 'stepped':
        ac.set_hwp_mod(mode='stepped', freq=1 / (3 * 60 * 60.))

    # Generate timestreams, bin them and store as attributes
    ac.scan_instrument_mpi(alm,
                           verbose=2,
                           ra0=ra0,
                           dec0=dec0,
                           az_throw=az_throw,
                           nside_spin=256,
                           el_min=el_min,
                           cut_el_min=cut_el_min,
                           create_memmap=True)

    # Solve for the maps
    maps, cond = ac.solve_for_map(fill=np.nan)

    # Plotting
    if ac.mpi_rank == 0:
        print('plotting results')
        img_out_path = '../scratch/img/'

        moll_opts = dict(unit=r'[$\mu K_{\mathrm{CMB}}$]')

        # plot rescanned maps
        plot_iqu(maps,
                 img_out_path,
                 'rescan_atacama',
                 sym_limits=[250, 5, 5],
                 plot_func=hp.mollview,
                 **moll_opts)

        # plot smoothed input maps
        nside = hp.get_nside(maps[0])
        hp.smoothalm(alm, fwhm=np.radians(fwhm / 60.), verbose=False)
        maps_raw = hp.alm2map(alm, nside, verbose=False)

        plot_iqu(maps_raw,
                 img_out_path,
                 'raw_atacama',
                 sym_limits=[250, 5, 5],
                 plot_func=hp.mollview,
                 **moll_opts)

        # plot difference maps
        for arr in maps_raw:
            # replace stupid UNSEEN crap
            arr[arr == hp.UNSEEN] = np.nan

        diff = maps_raw - maps

        plot_iqu(diff,
                 img_out_path,
                 'diff_atacama',
                 sym_limits=[1e-6, 1e-6, 1e-6],
                 plot_func=hp.mollview,
                 **moll_opts)

        # plot condition number map
        moll_opts.pop('unit', None)

        plot_map(cond,
                 img_out_path,
                 'cond_atacama',
                 min=2,
                 max=5,
                 unit='condition number',
                 plot_func=hp.mollview,
                 **moll_opts)

        # plot input spectrum
        cls[3][cls[3] <= 0.] *= -1.
        dell = ell * (ell + 1) / 2. / np.pi
        plt.figure()
        for i, label in enumerate(['TT', 'EE', 'BB', 'TE']):
            plt.semilogy(ell, dell * cls[i], label=label)

        plt.legend()
        plt.ylabel(r'$D_{\ell}$ [$\mu K^2_{\mathrm{CMB}}$]')
        plt.xlabel(r'Multipole [$\ell$]')
        plt.savefig('../scratch/img/cls_atacama.png')
        plt.close()

        print("Results written to {}".format(os.path.abspath(img_out_path)))
Exemple #54
0
def almrec(tab, nside):

    alm = tab2alm(tab)
    map_out = hp.alm2map(alm, nside, verbose=False)

    return map_out
Exemple #55
0
def idea_jon():

    nside_spin = 512
    ra0 = 0
    dec0 = -90
    az_throw = 10
    max_spin = 5
    fwhm = 32.2
    scan_opts = dict(verbose=1,
                     ra0=ra0,
                     dec0=dec0,
                     az_throw=az_throw,
                     nside_spin=nside_spin,
                     max_spin=max_spin,
                     binning=True)

    lmax = 800

    alm = tools.gauss_blm(1e-5, lmax, pol=False)
    ell = np.arange(lmax + 1)
    fl = np.sqrt((2 * ell + 1) / 4. / np.pi)
    hp.almxfl(alm, fl, mmax=None, inplace=True)
    fm = (-1)**(hp.Alm.getlm(lmax)[1])
    alm *= fm
    alm = tools.get_copol_blm(alm)

    # create Beam properties and pickle (this is just to test load_focal_plane)
    import tempfile
    import shutil
    import pickle
    opj = os.path.join

    blm_dir = os.path.abspath(
        opj(os.path.dirname(__file__), '../tests/test_data/example_blms'))
    po_file = opj(blm_dir, 'blm_hp_X1T1R1C8A_800_800.npy')
    eg_file = opj(blm_dir, 'blm_hp_eg_X1T1R1C8A_800_800.npy')

    tmp_dir = tempfile.mkdtemp()

    beam_file = opj(tmp_dir, 'beam_opts.pkl')
    beam_opts = dict(az=0,
                     el=0,
                     polang=0.,
                     btype='Gaussian',
                     name='X1T1R1C8',
                     fwhm=fwhm,
                     lmax=800,
                     mmax=800,
                     amplitude=1.,
                     po_file=po_file,
                     eg_file=eg_file)

    with open(beam_file, 'wb') as handle:
        pickle.dump(beam_opts, handle, protocol=pickle.HIGHEST_PROTOCOL)

    # init scan strategy and instrument
    ss = ScanStrategy(
        1.,  # mission duration in sec.
        sample_rate=10000,
        location='spole')

    ss.allocate_maps(nside=1024)
    ss.load_focal_plane(tmp_dir, no_pairs=True)

    # remove tmp dir and contents
    shutil.rmtree(tmp_dir)

    ss.set_el_steps(0.01, steps=np.linspace(-10, 10, 100))

    # Generate maps with Gaussian beams
    ss.scan_instrument_mpi(alm, **scan_opts)
    ss.reset_el_steps()

    # Solve for the maps
    maps_g, cond_g = ss.solve_for_map(fill=np.nan)

    # Generate maps with elliptical Gaussian beams
    ss.allocate_maps(nside=1024)
    ss.beams[0][0].btype = 'EG'
    ss.scan_instrument_mpi(alm, **scan_opts)
    ss.reset_el_steps()

    # Solve for the maps
    maps_eg, cond_eg = ss.solve_for_map(fill=np.nan)

    # Generate map with Physical Optics beams and plot them
    ss.allocate_maps(nside=1024)
    ss.beams[0][0].btype = 'PO'
    ss.scan_instrument_mpi(alm, **scan_opts)
    ss.reset_el_steps()

    # Solve for the maps
    maps_po, cond_po = ss.solve_for_map(fill=np.nan)

    # Plotting
    print('plotting results')

    cart_opts = dict(  #rot=[ra0, dec0, 0],
        lonra=[-min(0.5 * az_throw, 10),
               min(0.5 * az_throw, 10)],
        latra=[-min(0.375 * az_throw, 10),
               min(0.375 * az_throw, 10)],
        unit=r'[$\mu K_{\mathrm{CMB}}$]')

    # plot smoothed input maps
    nside = hp.get_nside(maps_g[0])
    hp.smoothalm(alm, fwhm=np.radians(fwhm / 60.), verbose=False)
    maps_raw = hp.alm2map(alm, nside, verbose=False)

    plot_iqu(maps_raw,
             '../scratch/img/',
             'raw_delta',
             sym_limits=[1, 1, 1],
             plot_func=hp.cartview,
             **cart_opts)
Exemple #56
0
theta, phi = hp.pix2ang(nside, pixels)
mollProj = hp.projector.MollweideProj()
x, y = mollProj.ang2xy(theta, phi)
theta = 90 - np.degrees(theta)  #lat
phi = np.degrees(phi)  #lon

seismic_cmap = cm.get_cmap('seismic')
seismic_cmap.set_under('w')

gradphiR, gradphiI = hp.read_map(
    "/scratch2/r/rbond/phamloui/lenspix_files/cib_v2_phi/8Gpc_n2048_nb18_nt16_phi_sis_2_ns2048_zmin0.0_zmax2.8_hp_grad.fits",
    field=(0, 1))
# gradphiR = hp.ud_grade(gradphiR, 512)
# gradphiI = hp.ud_grade(gradphiI, 512)
gravPotential = hp.alm2map(
    hp.read_alm(
        "/scratch2/r/rbond/phamloui/lenspix_files/cib_v2_phi/8Gpc_n2048_nb18_nt16_phi_sis_2_ns2048_zmin0.0_zmax2.8_hp.fits"
    ), 2048)
unlensed = hp.read_map(
    "/scratch2/r/rbond/phamloui/lenspix_files/cib_v2_unlensed/cib_fullsky_ns2048_zmin2.80_zmax3.00_nu217_ns2048_tot.fits"
)
lensed = hp.read_map(
    "/scratch2/r/rbond/phamloui/lenspix_files/cib_v2_lensed/lensed_cib_fullsky_ns2048_zmin2.80_zmax3.00_nu217_ns2048_tot.fits"
)
# print lensed[np.isnan(lensed)].shape
# gradIndices = np.random.choice(nside**2*12, nside**2*12/40000, replace=False)
# gradIndices = pixels[((phi<=90) | (phi>=270)) & (np.absolute(theta)<=45)]
# gradIndices = np.random.choice(gradIndices, gradIndices.shape[0]/400, replace=False)

# get nan coordinates and overplot there
lensedUnseen = np.copy(lensed)
lensedNanToZero = np.copy(lensed)
Exemple #57
0
def rotate_map_g_c(map_in, c2g=False):
    ns = hp.npix2nside(len(map_in))
    alm_in = hp.map2alm(map_in)
    alm_out = rotate_alm_g_c(alm_in, c2g=False)
    return hp.alm2map(alm_out, ns, verbose=False)
Exemple #58
0
        img, phi, theta = SWHT.swht.make3Dimage(imgCoeffs,
                                                dim=[opts.pixels, opts.pixels])
        fig, ax = SWHT.display.disp3D(img, phi, theta, dmode='abs', cmap='jet')

        # save complex image to pickle file
        print 'Writing image to file %s ...' % outFn,
        SWHT.fileio.writeSWHTImgPkl(outFn, [img, phi, theta], fDict, mode='3D')
        print 'done'

    elif opts.imageMode.startswith(
            'heal'
    ):  # plot healpix and save healpix file using the opts.pkl name
        print 'Generating HEALPix Image with %i NSIDE' % (opts.pixels)
        # use the healpy.alm2map function as it is much faster, there is a ~1% difference between the 2 functions, this is probably due to the inner workings of healpy
        #m = SWHT.swht.makeHEALPix(imgCoeffs, nside=opts.pixels) # TODO: a rotation issue
        m = hp.alm2map(SWHT.util.array2almVec(imgCoeffs),
                       opts.pixels)  # TODO: a rotation issue

        # save complex image to HEALPix file
        print 'Writing image to file %s ...' % outFn,
        hp.write_map(
            outFn, m.real, coord='C'
        )  # only writing the real component, this should be fine, maybe missing some details, but you know, the sky should be real.
        print 'done'

    elif opts.imageMode.startswith('coeff'):  # plot the complex coefficients
        fig, ax = SWHT.display.dispCoeffs(imgCoeffs, zeroDC=True, vis=False)

    if not (opts.savefig is None): plt.savefig(opts.savefig)
    if not opts.nodisplay:
        if opts.imageMode.startswith('heal'): hp.mollview(m.real, coord='CG')
        plt.show()
Exemple #59
0
def propOpp(cube=None,
            flo=100.,
            fhi=200.,
            lmax=100,
            npznamelist=None,
            save_cubes=True):
    """
    Propogate the Q and U components of an IQUV cube through
    the Oppermann et al. 2012 RM map.

    The cube must be 4 or 2 by npix by nfreq. If 4, the middle two arrays will be
    assumed to be Q & U IN THAT ORDER.
    Or if fromnpz=True, then provide an array of npz names (cube length assumptionsremain)
    """
    ## load the maps
    if npznamelist != None:
        assert (cube == None)
        nNpz = len(npznamelist)
        assert (nNpz == 2 or nNpz == 4)

        if nNpz == 2:
            Q = np.load(npznamelist[0])['maps']
            U = np.load(npznamelist[1])['maps']
        else:
            Q = np.load(npznamelist[1])['maps']
            U = np.load(npznamelist[2])['maps']
    elif cube != None:
        Q = cube[1]
        U = cube[2]
    else:
        raise ImplmentationError('No map information provided.')

    ##
    nbins = Q.shape[0]
    nu = np.linspace(flo, fhi, num=nbins)
    lam = 3e8 / (nu * 1e6)
    lam2 = np.power(lam, 2)

    d = pyfits.open('opp2012.fits')
    RM = d[3].data.field(0)
    """
    The RM map is nside=128. Everything else is nside=512.
    We're smoothing on scales larger than the pixellization
    this introduces, so no worries.

    RMmap=hp.ud_grade(RM,nside_out=512)
    hp.mollview(RMmap,title='Oppermann map')

    RMmap=hp.smoothing(RMmap,fwhm=np.radians(1.))

    hp.mollview(RMmap,title='Oppermann map smoothed')
    plt.show()
    """
    #Downsample RM variance in alm space
    #Upsample it in pixellization
    #Is this kosher?
    Qn, Un = [np.zeros((nbins, hp.nside2npix(128))) for i in range(2)]
    for i in range(Q.shape[0]):
        # print Q[:,i].shape
        Qn[i] = hp.alm2map(hp.map2alm(Q[i], lmax=3 * 512 - 1), nside=128)
        Un[i] = hp.alm2map(hp.map2alm(U[i], lmax=3 * 512 - -1), nside=128)

    RMmap = RM

    # RMmap = hp.alm2map(hp.map2alm(RM,lmax=lmax),nside=512)
    Qmaps_rot = np.zeros_like(Qn)
    Umaps_rot = np.zeros_like(Un)

    # phi = np.outer(RMmap,lam2)
    for i in range(nbins):
        phi = RMmap * lam2[i]
        fara_rot = (Qn[i] + 1.j * Un[i]) * np.exp(
            -2.j * phi)  #Eq. 9 of Moore et al. 2013
        Qmaps_rot[i] = fara_rot.real
        Umaps_rot[i] = fara_rot.imag

    QU = [Qmaps_rot, Umaps_rot]

    if save_cubes == True:
        print 'Saving Q U rotated'
        np.savez('cube_Qrot_%s-%sMHz.npz' % (str(flo), str(fhi)),
                 maps=Qmaps_rot)
        np.savez('cube_Urot_%s-%sMHz.npz' % (str(flo), str(fhi)),
                 maps=Umaps_rot)

    return np.array(QU)
    def accum(self, tmap, coeffs):
        assert (len(coeffs) == self.nmodes)

        nside = hp.npix2nside(len(tmap))
        tmap += hp.alm2map(xyz_to_alm(coeffs), nside)