Exemple #1
0
    def run_benchmark(self):
        
    
        sample_rate = self.params['sample_rate']
        chunksize = self.params['chunksize']
        nloop = self.params['nloop']
        nb_channel = self.params['nb_channel']
        
        gpu = self.gpuDeviceSelection.get_configuration()
        gpu_platform_index = gpu['platform_index']
        gpu_device_index = gpu['device_index']
        
        lost_chunksize = 1024
        backward_chunksize = lost_chunksize + chunksize
        
        length = int(chunksize*nloop)

        in_buffer = hls.moving_erb_noise(length, sample_rate=sample_rate)
        in_buffer = np.tile(in_buffer[:, None],(1, nb_channel))

        loss_params = {  'left' : {'freqs' :  [125., 250., 500., 1000., 2000., 4000., 8000.],
                                                    'compression_degree': [0., 0., 0., 0., 0., 0., 0.],
                                                    'passive_loss_db' : [0., 0., 0., 0., 0., 0., 0.],
                                                },
                                    'right' : {'freqs' :  [125., 250., 500., 1000., 2000., 4000., 8000.],
                                                    'compression_degree': [0., 0., 0., 0., 0., 0., 0.],
                                                    'passive_loss_db' : [0., 0., 0., 0., 0., 0., 0.],
                                                }
                                }
        processing_conf = dict(nb_freq_band=32, level_step=1, loss_params=loss_params, 
                    low_freq = 100., high_freq = sample_rate*0.45, 
                    debug_mode=False, chunksize=chunksize, backward_chunksize=backward_chunksize)
        #~ node, online_arrs = hls.run_one_node_offline(hls.MainProcessing, in_buffer, chunksize, 
                        #~ sample_rate, node_conf=node_conf, buffersize_margin=backward_chunksize)


        for _class in [hls.InvCGC, hls.InvComp]:
        #~ for _class in [hls.InvComp, hls.InvComp2,]:
        #~ for _class in [hls.InvComp,]:
        #~ for _class in [hls.InvComp2,]:
            print()
            print(_class.__name__, sample_rate, chunksize, backward_chunksize, nb_channel, processing_conf['nb_freq_band'])
            processing = _class(nb_channel=nb_channel, sample_rate=sample_rate,  apply_configuration_at_init=False, **processing_conf)
            processing.create_opencl_context(gpu_platform_index=gpu_platform_index, gpu_device_index=gpu_device_index)
            print(processing.ctx)
            processing.initialize()
            online_arrs = hls.run_instance_offline(processing, in_buffer, chunksize, sample_rate,
                        buffersize_margin=backward_chunksize, time_stats=True)
Exemple #2
0
def test_passive_loss():
    in_buffer = hls.moving_sinus(length,
                                 sample_rate=sample_rate,
                                 speed=.5,
                                 f1=500.,
                                 f2=2000.,
                                 ampl=.8)
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))

    loss_params = {
        'left': {
            'freqs': [125 * 2**i for i in range(7)],
            'compression_degree': [1.] * 7,
            'passive_loss_db': [-20.] * 7
        }
    }
    loss_params['right'] = loss_params['left']

    processing_conf = dict(nb_freq_band=32,
                           level_step=10,
                           debug_mode=True,
                           chunksize=chunksize,
                           backward_chunksize=backward_chunksize,
                           loss_params=loss_params)
    #~ processing, online_arrs = hls.run_class_offline(hls.InvComp, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)
    processing = hls.InvComp(nb_channel=nb_channel,
                             sample_rate=sample_rate,
                             dtype='float32',
                             **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        dtype='float32',
        buffersize_margin=backward_chunksize,
        time_stats=True)

    n = processing.nb_freq_band

    online_pgc2 = online_arrs['pgc2']
    online_passive = online_arrs['passive']
    #~ offline_passive = online_pgc2.copy()

    #~ channels = ('left', 'right')[:nb_channel]

    #~ for c, chan in enumerate(channels):
    #~ for i in range(n):
    #~ offline_passive[:, c*n + i] = processing.passive_gain[c*n + i] * online_pgc2
    offline_passive = processing.passive_gain.T * online_pgc2

    residual = np.abs(
        (online_passive.astype('float64') - offline_passive.astype('float64'))
        / np.mean(np.abs(offline_passive.astype('float64'))))
    print(np.max(residual))

    freq_band = 15

    fig, ax = plt.subplots(nrows=2, sharex=True)
    #~ ax[0].plot(in_buffer2[:, freq_band], color = 'k')
    ax[0].plot(offline_passive[:, freq_band], color='g')
    ax[0].plot(online_passive[:, freq_band], color='r', ls='--')
    ax[1].plot(residual[:, freq_band], color='m')
    for i in range(nloop):
        ax[1].axvline(i * chunksize)
    plt.show()

    assert np.max(residual) < 1e-4, 'passive online differt from offline'
Exemple #3
0
def test_invcomp():
    #~ in_buffer = hls.moving_erb_noise(length)
    in_buffer = hls.moving_sinus(length,
                                 sample_rate=sample_rate,
                                 speed=.5,
                                 f1=100.,
                                 f2=2000.,
                                 ampl=.8)
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))
    #~ print(in_buffer.shape)
    #~ exit()

    loss_params = {
        'left': {
            'freqs': [125 * 2**i for i in range(7)],
            'compression_degree': [0] * 7,
            'passive_loss_db': [0] * 7
        }
    }
    loss_params['right'] = loss_params['left']
    processing_conf = dict(nb_freq_band=32,
                           level_step=1.,
                           level_max=100.,
                           loss_params=loss_params,
                           low_freq=100.,
                           high_freq=15000.,
                           debug_mode=True,
                           chunksize=chunksize,
                           backward_chunksize=backward_chunksize)
    #~ processing, online_arrs = hls.run_class_offline(hls.InvComp, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)
    processing = hls.InvComp(nb_channel=nb_channel,
                             sample_rate=sample_rate,
                             dtype='float32',
                             **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        dtype='float32',
        buffersize_margin=backward_chunksize,
        time_stats=True)

    print('nlevel', processing.levels.size, 'nb_freq_band',
          processing.nb_freq_band)

    freq_band = 15

    fig, ax = plt.subplots(nrows=7, sharex=True)  #, sharey=True)
    ax[0].plot(in_buffer[:, 0], color='k')

    steps = ['pgc1', 'levels', 'dyngain', 'pgc2', 'passive']
    for i, k in enumerate(steps):

        online_arr = online_arrs[k]
        print(online_arr.shape)
        ax[i + 1].plot(online_arr[:, freq_band], color='b')
        ax[i + 1].set_ylabel(k)
    #~ ax[0].plot(offline_arr[:, 0], color = 'g')

    out_buffer = online_arrs['main_output']
    ax[-1].plot(out_buffer[:, 0], color='k')

    if nb_channel == 2:
        #test stereo is like mono
        #~ fig, ax = plt.subplots()
        #~ ax.plot(out_buffer[:,0], color='b')
        #~ ax.plot(out_buffer[:,1], color='r')
        #~ fig, ax = plt.subplots()
        #~ ax.plot(out_buffer[:,0]-out_buffer[:,1], color='b')
        #~ plt.show()
        assert np.all(np.abs(out_buffer[:, 0] - out_buffer[:, 1]) < 1e-5)

    plt.show()
Exemple #4
0
def test_pgc2():
    assert nb_channel == 1
    #~ in_buffer = hls.moving_sinus(length, sample_rate=sample_rate, speed = .5,  f1=50., f2=2000.,  ampl = .8)
    #~ in_buffer = hls.moving_erb_noise(length, sample_rate=sample_rate,)
    in_buffer = hls.whitenoise(
        length,
        sample_rate=sample_rate,
    )
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))

    loss_params = {
        'left': {
            'freqs': [125 * 2**i for i in range(7)],
            'compression_degree': [0] * 7,
            'passive_loss_db': [0] * 7
        }
    }
    loss_params['right'] = loss_params['left']

    processing_conf = dict(nb_freq_band=32,
                           level_max=120,
                           level_step=1,
                           debug_mode=True,
                           low_freq=60.,
                           high_freq=15000.,
                           loss_params=loss_params,
                           chunksize=chunksize,
                           backward_chunksize=backward_chunksize)
    #~ processing, online_arrs = hls.run_class_offline(hls.InvComp, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)
    processing = hls.InvComp(nb_channel=nb_channel,
                             sample_rate=sample_rate,
                             dtype='float32',
                             **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        dtype='float32',
        buffersize_margin=backward_chunksize,
        time_stats=True)

    freq_band = 4

    online_dyngain = online_arrs['dyngain']
    online_pgc2 = online_arrs['pgc2']
    offline_pgc2 = online_pgc2.copy()

    n = processing.nb_freq_band
    for i in range(n):
        offline_pgc2[:, i] = scipy.signal.sosfilt(
            processing.coefficients_pgc[i, :, :], online_dyngain[::-1,
                                                                 i])[::-1]

    online_pgc2 = online_pgc2[:-backward_chunksize]
    offline_pgc2 = offline_pgc2[:-backward_chunksize]

    residual = np.abs(
        (online_pgc2.astype('float64') - offline_pgc2.astype('float64')) /
        np.mean(np.abs(offline_pgc2.astype('float64')), axis=0))
    print(np.max(residual, axis=0))
    print(np.max(residual))

    #~ freq_band = 4

    fig, ax = plt.subplots(nrows=2, sharex=True)
    #~ ax[0].plot(online_hpaf[:, freq_band], color = 'b')
    ax[0].plot(offline_pgc2[:, freq_band], color='g')
    ax[0].plot(online_pgc2[:, freq_band], color='r', ls='--')
    ax[1].plot(residual[:, freq_band], color='m')
    ax[1].set_ylabel('residual for band {:0.2f}'.format(
        processing.freqs[freq_band]))
    for i in range(nloop):
        ax[1].axvline(i * chunksize)
    plt.show()

    # TODO make one values per band
    assert np.max(residual) < 2e-2, 'hpaf online differt from offline'
Exemple #5
0
def test_dyngain():
    """
    For testing dynamic gain we take coefficient with only one level so
    it is dynamic with alwas the same coefficient.
    
    """
    assert nb_channel == 1
    #~ in_buffer = hls.moving_sinus(length, sample_rate=sample_rate, speed = .5,  f1=500., f2=2000.,  ampl = .8)
    in_buffer = hls.moving_erb_noise(length)
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))

    loss_params = {
        'left': {
            'freqs': [125 * 2**i for i in range(7)],
            'compression_degree': [0] * 7,
            'passive_loss_db': [0] * 7
        }
    }
    loss_params['right'] = loss_params['left']

    processing_conf = dict(nb_freq_band=5,
                           level_max=120,
                           level_step=120,
                           debug_mode=True,
                           chunksize=chunksize,
                           backward_chunksize=backward_chunksize,
                           loss_params=loss_params)

    #~ processing, online_arrs = hls.run_class_offline(hls.InvComp, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)
    processing = hls.InvComp(nb_channel=nb_channel,
                             sample_rate=sample_rate,
                             dtype='float32',
                             **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        dtype='float32',
        buffersize_margin=backward_chunksize,
        time_stats=True)

    #~ assert len(processing.levels)==1
    freq_band = 2

    online_pgc1 = online_arrs['pgc1']
    online_dyngain = online_arrs['dyngain']

    n = processing.nb_freq_band
    offline_dyngain = online_pgc1.copy()
    for i in range(n):
        offline_dyngain[:,
                        i] = online_pgc1[:, i] * processing.gain_controlled[i,
                                                                            0]
        print(processing.gain_controlled[i, 0])

    residual = np.abs(
        (online_dyngain.astype('float64') - offline_dyngain.astype('float64'))
        / np.mean(np.abs(offline_dyngain.astype('float64'))))
    print(np.max(residual))

    freq_band = 4

    fig, ax = plt.subplots(nrows=2, sharex=True)
    #~ ax[0].plot(online_pgc1[:, freq_band], color = 'b')
    ax[0].plot(offline_dyngain[:, freq_band], color='g')
    ax[0].plot(online_dyngain[:, freq_band], color='r', ls='--')
    ax[1].plot(residual[:, freq_band], color='m')
    for i in range(nloop):
        ax[1].axvline(i * chunksize)
    plt.show()

    assert np.max(residual) < 2e-2, 'hpaf online differt from offline'
Exemple #6
0
def test_levels():
    assert nb_channel == 1
    #~ in_buffer = hls.moving_sinus(length, sample_rate=sample_rate, speed = .5,  f1=500., f2=2000.,  ampl = .8)
    in_buffer = hls.moving_erb_noise(length)
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))

    loss_params = {
        'left': {
            'freqs': [125 * 2**i for i in range(7)],
            'compression_degree': [0] * 7,
            'passive_loss_db': [0] * 7
        }
    }
    loss_params['right'] = loss_params['left']

    processing_conf = dict(nb_freq_band=5,
                           level_step=10,
                           debug_mode=True,
                           chunksize=chunksize,
                           backward_chunksize=backward_chunksize,
                           loss_params=loss_params)
    #~ processing, online_arrs = hls.run_class_offline(hls.InvComp, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)
    processing = hls.InvComp(nb_channel=nb_channel,
                             sample_rate=sample_rate,
                             dtype='float32',
                             **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        dtype='float32',
        buffersize_margin=backward_chunksize,
        time_stats=True)

    freq_band = 2

    out_pgc1 = online_arrs['pgc1']
    hilbert_env = np.abs(scipy.signal.hilbert(out_pgc1[:, freq_band], axis=0))
    hilbert_level = 20 * np.log10(hilbert_env) + processing.calibration

    #~ online_levels= online_arrs['levels'][:, freq_band]*processing.level_step
    online_levels = online_arrs['levels'][:, freq_band]
    online_env = 10**((online_levels - processing.calibration) / 20.)

    residual = np.abs(
        (online_levels.astype('float64') - hilbert_level.astype('float64')) /
        np.mean(np.abs(online_levels.astype('float64'))))
    residual[:100] = 0
    residual[-100:] = 0
    print(np.max(residual))

    #~ assert np.max(residual)<3e-2, 'levelfrom hilbert offline'

    fig, ax = plt.subplots(nrows=2, sharex=True)
    ax[0].plot(out_pgc1[:, freq_band], color='k', alpha=.8)
    ax[0].plot(np.abs(out_pgc1[:, freq_band]), color='k', ls='--', alpha=.8)
    ax[0].plot(hilbert_env, color='g', lw=2)
    ax[0].plot(online_env, color='r', lw=2)

    ax[1].plot(online_levels, color='r')
    ax[1].plot(hilbert_level, color='g')

    ax[1].set_ylabel('level dB')

    plt.show()
Exemple #7
0
def test_pgc1():
    assert nb_channel == 1
    in_buffer = hls.moving_sinus(length,
                                 sample_rate=sample_rate,
                                 speed=.5,
                                 f1=500.,
                                 f2=2000.,
                                 ampl=.8)
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))

    loss_params = {
        'left': {
            'freqs': [125 * 2**i for i in range(7)],
            'compression_degree': [0] * 7,
            'passive_loss_db': [0] * 7
        }
    }
    loss_params['right'] = loss_params['left']

    processing_conf = dict(nb_freq_band=5,
                           level_step=10,
                           debug_mode=True,
                           chunksize=chunksize,
                           backward_chunksize=backward_chunksize,
                           loss_params=loss_params)
    #~ processing, online_arrs = hls.run_class_offline(hls.InvComp, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)
    processing = hls.InvComp(nb_channel=nb_channel,
                             sample_rate=sample_rate,
                             dtype='float32',
                             **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        dtype='float32',
        buffersize_margin=backward_chunksize,
        time_stats=True)

    n = processing.nb_freq_band
    in_buffer2 = np.tile(in_buffer, (1, processing.nb_freq_band))
    online_arr = online_arrs['pgc1']
    offline_arr = in_buffer2.copy()
    for i in range(n):
        offline_arr[:, i] = scipy.signal.sosfilt(
            processing.coefficients_pgc[i, :, :], in_buffer2[:, i])
    offline_arr = offline_arr[:online_arr.shape[0]]

    residual = np.abs(
        (online_arr.astype('float64') - offline_arr.astype('float64')) /
        np.mean(np.abs(offline_arr.astype('float64'))))
    #~ print(np.max(residual))

    freq_band = 4

    fig, ax = plt.subplots(nrows=2, sharex=True)
    #~ ax[0].plot(in_buffer2[:, freq_band], color = 'k')
    ax[0].plot(offline_arr[:, freq_band], color='g')
    ax[0].plot(online_arr[:, freq_band], color='r', ls='--')
    ax[1].plot(residual[:, freq_band], color='m')
    for i in range(nloop):
        ax[1].axvline(i * chunksize)
    plt.show()

    #~ print(np.argmax(residual), np.max(residual))
    assert np.max(
        residual) < 1e-5, 'pgc1 online differt from offline {}'.format(
            np.max(residual))
Exemple #8
0
    }
}
processing_conf = dict(nb_freq_band=32,
                       level_step=1,
                       loss_params=loss_params,
                       low_freq=100.,
                       high_freq=sample_rate * 0.45,
                       debug_mode=False,
                       chunksize=chunksize,
                       backward_chunksize=backward_chunksize)
#~ node, online_arrs = hls.run_one_node_offline(hls.MainProcessing, in_buffer, chunksize,
#~ sample_rate, node_conf=node_conf, buffersize_margin=backward_chunksize)

for _class in [hls.InvCGC, hls.InvComp]:
    #~ for _class in [hls.InvComp, hls.InvComp2,]:
    #~ for _class in [hls.InvComp,]:
    #~ for _class in [hls.InvComp2,]:
    print()
    print(_class.__name__, sample_rate, chunksize, backward_chunksize,
          nb_channel, processing_conf['nb_freq_band'])
    processing = _class(nb_channel=nb_channel,
                        sample_rate=sample_rate,
                        **processing_conf)
    online_arrs = hls.run_instance_offline(
        processing,
        in_buffer,
        chunksize,
        sample_rate,
        buffersize_margin=backward_chunksize,
        time_stats=True)
def plot_residual():

    nb_channel = 1
    sample_rate = 44100.
    chunksize = 256
    #~ chunksize = 512
    #~ chunksize = 1024
    #~ chunksize =
    #~ nloop = 200
    nloop = 200

    nb_freq_band = 10

    length = int(chunksize * nloop)

    in_buffer = hls.whitenoise(
        length,
        sample_rate=sample_rate,
    )
    in_buffer = np.tile(in_buffer[:, None], (1, nb_channel))

    #~ lost_chunksize = np.linspace(0,1024, 5).astype(int)
    lost_chunksize = np.arange(7).astype(int) * chunksize

    #~ backward_chunksizes = [512,1024,1536,2048]
    #~ backward_chunksizes = [1024,1536,2048]
    #~ backward_chunksizes = np.linspace(1024,2048, 5).astype(int)
    backward_chunksizes = lost_chunksize + chunksize

    all_mean_residuals = np.zeros((len(backward_chunksizes), nb_freq_band))
    all_max_residuals = np.zeros((len(backward_chunksizes), nb_freq_band))

    for i, backward_chunksize in enumerate(backward_chunksizes):
        print('backward_chunksize', backward_chunksize)
        loss_params = {
            'left': {
                'freqs': [125., 250., 500., 1000., 2000., 4000., 8000.],
                'compression_degree': [0., 0., 0., 0., 0., 0., 0.],
                'passive_loss_db': [0., 0., 0., 0., 0., 0., 0.],
            }
        }
        processing_conf = dict(nb_freq_band=nb_freq_band,
                               low_freq=40.,
                               high_freq=500.,
                               level_max=100,
                               level_step=100,
                               debug_mode=True,
                               chunksize=chunksize,
                               backward_chunksize=backward_chunksize,
                               loss_params=loss_params)

        processing = hls.InvCGC(nb_channel=nb_channel,
                                sample_rate=sample_rate,
                                dtype='float32',
                                **processing_conf)
        online_arrs = hls.run_instance_offline(
            processing,
            in_buffer,
            chunksize,
            sample_rate,
            dtype='float32',
            buffersize_margin=backward_chunksize)

        #~ processing, online_arrs = hls.run_one_class_offline(hls.InvCGC, in_buffer, chunksize, sample_rate, processing_conf=processing_conf, buffersize_margin=backward_chunksize)

        #~ freq_band = 2

        online_hpaf = online_arrs['hpaf']
        online_pgc2 = online_arrs['pgc2']
        offline_pgc2 = online_pgc2.copy()

        n = processing.nb_freq_band
        for b in range(n):
            offline_pgc2[:, b] = scipy.signal.sosfilt(
                processing.coefficients_pgc[b, :, :], online_hpaf[::-1,
                                                                  b])[::-1]

        online_pgc2 = online_pgc2[:-backward_chunksize]
        offline_pgc2 = offline_pgc2[:-backward_chunksize]

        residual = np.abs(
            (online_pgc2.astype('float64') - offline_pgc2.astype('float64')) /
            np.mean(np.abs(offline_pgc2.astype('float64')), axis=0))
        all_mean_residuals[i, :] = np.mean(residual, axis=0)
        all_max_residuals[i, :] = np.max(residual, axis=0)

    def my_imshow(m, ax):
        im = ax.imshow(m,
                       interpolation='nearest',
                       origin='lower',
                       aspect='auto',
                       cmap='viridis')  #, extent = extent, cmap=cmap)
        im.set_clim(0, 0.05)
        ax.set_xticks(np.arange(processing.freqs.size))
        ax.set_xticklabels(['{:0.0f}'.format(f) for f in processing.freqs])
        ax.set_yticks(np.arange(len(backward_chunksizes)))
        ax.set_yticklabels(['{}'.format(f) for f in lost_chunksize])
        ax.set_xlabel('freq')
        ax.set_ylabel('lost_chunksize')

        return im

    print(all_max_residuals)
    fig, axs = plt.subplots(nrows=2, sharex=True)
    im1 = my_imshow(all_mean_residuals, axs[0])
    im2 = my_imshow(all_max_residuals, axs[1])
    cax = fig.add_axes([0.92, 0.05, .02, 0.9])
    fig.colorbar(im1, ax=axs[0], cax=cax, orientation='vertical')

    plt.show()