Exemple #1
0
    def test_or(self):
        int16_tensor = ht.array([[1, 1], [2, 2]], dtype=ht.int16)
        int16_vector = ht.array([[3, 4]], dtype=ht.int16)

        self.assertTrue(
            ht.equal(int16_tensor | int16_vector, ht.bitwise_or(int16_tensor, int16_vector))
        )
Exemple #2
0
    def test_bitwise_or(self):
        an_int_tensor = ht.array([[1, 2], [3, 4]])
        an_int_vector = ht.array([2, 2])
        another_int_vector = ht.array([2, 2, 2, 2])
        int_result = ht.array([[3, 2], [3, 6]])

        a_boolean_vector = ht.array([False, True, False, True])
        another_boolean_vector = ht.array([False, False, True, True])
        boolean_result = ht.array([False, True, True, True])

        self.assertTrue(
            ht.equal(ht.bitwise_or(an_int_tensor, self.an_int_scalar),
                     int_result))
        self.assertTrue(
            ht.equal(ht.bitwise_or(an_int_tensor, an_int_vector), int_result))
        self.assertTrue(
            ht.equal(ht.bitwise_or(a_boolean_vector, another_boolean_vector),
                     boolean_result))
        self.assertTrue(
            ht.equal(
                ht.bitwise_or(an_int_tensor.copy().resplit_(0), an_int_vector),
                int_result))

        with self.assertRaises(TypeError):
            ht.bitwise_or(self.a_tensor, self.another_tensor)
        with self.assertRaises(ValueError):
            ht.bitwise_or(an_int_vector, another_int_vector)
        with self.assertRaises(TypeError):
            ht.bitwise_or(self.a_tensor, self.erroneous_type)
        with self.assertRaises(TypeError):
            ht.bitwise_or("T", "s")
        with self.assertRaises(TypeError):
            ht.bitwise_or(an_int_tensor, "s")
        with self.assertRaises(TypeError):
            ht.bitwise_or(self.an_int_scalar, "s")
        with self.assertRaises(TypeError):
            ht.bitwise_or("s", self.an_int_scalar)
        with self.assertRaises(TypeError):
            ht.bitwise_or(self.an_int_scalar, self.a_scalar)
Exemple #3
0
    def test_bitwise_or(self):
        an_int_tensor = ht.array([[1, 2], [3, 4]], device=ht_device)
        an_int_vector = ht.array([2, 2], device=ht_device)
        another_int_vector = ht.array([2, 2, 2, 2], device=ht_device)

        int_result = ht.array([[3, 2], [3, 6]], device=ht_device)

        int16_result = ht.array([[0, 2], [2, 0]],
                                dtype=ht.int16,
                                device=ht_device)

        a_boolean_vector = ht.array([False, True, False, True],
                                    device=ht_device)
        another_boolean_vector = ht.array([False, False, True, True],
                                          device=ht_device)
        boolean_result = ht.array([False, True, True, True], device=ht_device)

        self.assertTrue(
            ht.equal(ht.bitwise_or(an_int_tensor, self.an_int_scalar),
                     int_result))
        self.assertTrue(
            ht.equal(ht.bitwise_or(an_int_tensor, an_int_vector), int_result))
        self.assertTrue(
            ht.equal(ht.bitwise_or(a_boolean_vector, another_boolean_vector),
                     boolean_result))

        with self.assertRaises(TypeError):
            ht.bitwise_or(self.a_tensor, self.another_tensor)
        with self.assertRaises(TypeError):
            ht.bitwise_or(another_int_vector, a_boolean_vector)
        with self.assertRaises(ValueError):
            ht.bitwise_or(an_int_vector, another_int_vector)
        with self.assertRaises(TypeError):
            ht.bitwise_or(self.a_tensor, self.errorneous_type)
        with self.assertRaises(TypeError):
            ht.bitwise_or("T", "s")
        with self.assertRaises(TypeError):
            ht.bitwise_or(an_int_tensor, "s")
        with self.assertRaises(TypeError):
            ht.bitwise_or(self.an_int_scalar, "s")
        with self.assertRaises(TypeError):
            ht.bitwise_or("s", self.an_int_scalar)
        with self.assertRaises(TypeError):
            ht.bitwise_or(self.an_int_scalar, self.a_scalar)
        with self.assertRaises(TypeError):
            ht.bitwise_or(int_result, int16_result)
        with self.assertRaises(NotImplementedError):
            ht.bitwise_or([1], 2)
        with self.assertRaises(TypeError):
            ht.bitwise_or(1, [2])
Exemple #4
0
    def test___binary_bit_op_broadcast(self):

        # broadcast without split
        left_tensor = ht.ones((4, 1), dtype=ht.int32)
        right_tensor = ht.ones((1, 2), dtype=ht.int32)
        result = left_tensor & right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor & left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=0 for both operants
        left_tensor = ht.ones((4, 1), split=0, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), split=0, dtype=ht.int32)
        result = left_tensor | right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor | left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=1 for both operants
        left_tensor = ht.ones((4, 1), split=1, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), split=1, dtype=ht.int32)
        result = left_tensor ^ right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor ^ left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=1 for second operant
        left_tensor = ht.ones((4, 1), dtype=ht.int32)
        right_tensor = ht.ones((1, 2), split=1, dtype=ht.int32)
        result = left_tensor & right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor & left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=0 for first operant
        left_tensor = ht.ones((4, 1), split=0, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), dtype=ht.int32)
        result = left_tensor | right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor | left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with unequal dimensions and one splitted tensor
        left_tensor = ht.ones((2, 4, 1), split=0, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), dtype=ht.int32)
        result = left_tensor ^ right_tensor
        self.assertEqual(result.shape, (2, 4, 2))
        result = right_tensor ^ left_tensor
        self.assertEqual(result.shape, (2, 4, 2))

        # broadcast with unequal dimensions, a scalar, and one splitted tensor
        left_scalar = ht.np.int32(1)
        right_tensor = ht.ones((1, 2), split=0, dtype=ht.int32)
        result = ht.bitwise_or(left_scalar, right_tensor)
        self.assertEqual(result.shape, (1, 2))
        result = right_tensor | left_scalar
        self.assertEqual(result.shape, (1, 2))

        # broadcast with unequal dimensions and two splitted tensors
        left_tensor = ht.ones((4, 1, 3, 1, 2), split=0, dtype=torch.uint8)
        right_tensor = ht.ones((1, 3, 1), split=0, dtype=torch.uint8)
        result = left_tensor & right_tensor
        self.assertEqual(result.shape, (4, 1, 3, 3, 2))
        result = right_tensor & left_tensor
        self.assertEqual(result.shape, (4, 1, 3, 3, 2))

        with self.assertRaises(TypeError):
            ht.bitwise_and(ht.ones((1, 2)), "wrong type")
        with self.assertRaises(NotImplementedError):
            ht.bitwise_or(ht.ones((1, 2), dtype=ht.int32, split=0),
                          ht.ones((1, 2), dtype=ht.int32, split=1))
Exemple #5
0
    def test___binary_bit_op_broadcast(self):

        # broadcast without split
        left_tensor = ht.ones((4, 1), dtype=ht.int32)
        right_tensor = ht.ones((1, 2), dtype=ht.int32)
        result = left_tensor & right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor & left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=0 for both operants
        left_tensor = ht.ones((4, 1), split=0, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), split=0, dtype=ht.int32)
        result = left_tensor | right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor | left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=1 for both operants
        left_tensor = ht.ones((4, 1), split=1, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), split=1, dtype=ht.int32)
        result = left_tensor ^ right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor ^ left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=1 for second operant
        left_tensor = ht.ones((4, 1), dtype=ht.int32)
        right_tensor = ht.ones((1, 2), split=1, dtype=ht.int32)
        result = left_tensor & right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor & left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with split=0 for first operant
        left_tensor = ht.ones((4, 1), split=0, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), dtype=ht.int32)
        result = left_tensor | right_tensor
        self.assertEqual(result.shape, (4, 2))
        result = right_tensor | left_tensor
        self.assertEqual(result.shape, (4, 2))

        # broadcast with unequal dimensions and one splitted tensor
        left_tensor = ht.ones((2, 4, 1), split=0, dtype=ht.int32)
        right_tensor = ht.ones((1, 2), dtype=ht.int32)
        result = left_tensor ^ right_tensor
        self.assertEqual(result.shape, (2, 4, 2))
        result = right_tensor ^ left_tensor
        self.assertEqual(result.shape, (2, 4, 2))

        # broadcast with unequal dimensions, a scalar, and one splitted tensor
        left_scalar = ht.np.int32(1)
        right_tensor = ht.ones((1, 2), split=0, dtype=ht.int32)
        result = ht.bitwise_or(left_scalar, right_tensor)
        self.assertEqual(result.shape, (1, 2))
        result = right_tensor | left_scalar
        self.assertEqual(result.shape, (1, 2))

        # broadcast with unequal dimensions and two splitted tensors
        left_tensor = ht.ones((4, 1, 3, 1, 2), split=2, dtype=torch.uint8)
        right_tensor = ht.ones((1, 3, 1), split=0, dtype=torch.uint8)
        result = left_tensor & right_tensor
        self.assertEqual(result.shape, (4, 1, 3, 3, 2))
        result = right_tensor & left_tensor
        self.assertEqual(result.shape, (4, 1, 3, 3, 2))

        with self.assertRaises(TypeError):
            ht.bitwise_and(ht.ones((1, 2)), "wrong type")
        with self.assertRaises(NotImplementedError):
            ht.bitwise_or(ht.ones((1, 2), dtype=ht.int32, split=0),
                          ht.ones((1, 2), dtype=ht.int32, split=1))

        a = ht.ones((4, 4), split=None)
        b = ht.zeros((4, 4), split=0)
        self.assertTrue(ht.equal(a * b, b))
        self.assertTrue(ht.equal(b * a, b))
        self.assertTrue(ht.equal(a[0] * b[0], b[0]))
        self.assertTrue(ht.equal(b[0] * a[0], b[0]))
        self.assertTrue(ht.equal(a * b[0:1], b))
        self.assertTrue(ht.equal(b[0:1] * a, b))
        self.assertTrue(ht.equal(a[0:1] * b, b))
        self.assertTrue(ht.equal(b * a[0:1], b))

        c = ht.array([1, 2, 3, 4], comm=ht.MPI_SELF)
        with self.assertRaises(NotImplementedError):
            b + c
        with self.assertRaises(TypeError):
            ht.minimum(a, np.float128(1))
        with self.assertRaises(TypeError):
            ht.minimum(np.float128(1), a)
        with self.assertRaises(NotImplementedError):
            a.resplit(1) * b
        with self.assertRaises(ValueError):
            a[2:] * b