Exemple #1
0
def do_exp(wf_name, **params):

    _wf = wf(wf_name)

    ga_makespan, heft_make, ga_schedule, heft_sched = MixRunner()(_wf, **params)

    rm = ExperimentResourceManager(rg.r(params["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0, transf_time_cost=0, transferMx=None,
                                    ideal_flops=params["ideal_flops"],
                                    transfer_time=params["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)


    data = {
        "wf_name": wf_name,
        "params": params,
        "heft": {
            "makespan": heft_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(heft_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(heft_schedule)
        },
        "ga": {
            "makespan": ga_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(ga_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(ga_schedule)
        },
        #"heft_schedule": heft_schedule,
        #"ga_schedule": ga_schedule
    }

    return data
Exemple #2
0
    def test_fixed_ordering(self):
        _wf = wf("Montage_25")
        rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
        estimator = SimpleTimeCostEstimator(comp_time_cost=0,
                                            transf_time_cost=0,
                                            transferMx=None,
                                            ideal_flops=20,
                                            transfer_time=100)
        sorted_tasks = HeftHelper.heft_rank(_wf, rm, estimator)

        heft_schedule = run_heft(_wf, rm, estimator)
        heft_mapping = schedule_to_position(heft_schedule)

        heft_gen = lambda: heft_mapping if random.random(
        ) > 0.95 else generate(_wf, rm, estimator)

        toolbox = Toolbox()
        # toolbox.register("generate", generate, _wf, rm, estimator)
        toolbox.register("generate", heft_gen)
        toolbox.register("fitness", fitness, _wf, rm, estimator, sorted_tasks)

        toolbox.register("force_vector_matrix", force_vector_matrix, rm)
        toolbox.register("velocity_and_position", velocity_and_position, _wf,
                         rm, estimator)
        toolbox.register("G", G)
        toolbox.register("kbest", Kbest)

        statistics = Statistics()
        statistics.register(
            "min", lambda pop: numpy.min([p.fitness.mofit for p in pop]))
        statistics.register(
            "avr", lambda pop: numpy.average([p.fitness.mofit for p in pop]))
        statistics.register(
            "max", lambda pop: numpy.max([p.fitness.mofit for p in pop]))
        statistics.register(
            "std", lambda pop: numpy.std([p.fitness.mofit for p in pop]))

        logbook = Logbook()
        logbook.header = ("gen", "G", "kbest", "min", "avr", "max", "std")

        pop_size = 100
        iter_number = 100
        kbest = pop_size
        ginit = 5

        final_pop = run_gsa(toolbox, statistics, logbook, pop_size,
                            iter_number, kbest, ginit)

        best = min(final_pop, key=lambda x: toolbox.fitness(x).mofit)
        solution = {
            MAPPING_SPECIE: list(zip(sorted_tasks, best)),
            ORDERING_SPECIE: sorted_tasks
        }
        schedule = build_schedule(_wf, estimator, rm, solution)
        Utility.validate_static_schedule(_wf, schedule)
        makespan = Utility.makespan(schedule)
        print("Final makespan: {0}".format(makespan))

        pass
Exemple #3
0
def do_exp(wf_name):
    _wf = wf(wf_name)

    heft_schedule = run_heft(_wf, rm, estimator)

    Utility.validate_static_schedule(_wf, heft_schedule)

    makespan = Utility.makespan(heft_schedule)
    return makespan
Exemple #4
0
def do_exp(wf_name):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0,
                                        transf_time_cost=0,
                                        transferMx=None,
                                        ideal_flops=20,
                                        transfer_time=100)

    empty_fixed_schedule_part = Schedule({node: [] for node in rm.get_nodes()})

    heft_schedule = run_heft(_wf, rm, estimator)

    ga_functions = GAFunctions2(_wf, rm, estimator)

    generate = partial(ga_generate,
                       ga_functions=ga_functions,
                       fixed_schedule_part=empty_fixed_schedule_part,
                       current_time=0.0,
                       init_sched_percent=0.05,
                       initial_schedule=heft_schedule)

    stats = tools.Statistics(lambda ind: ind.fitness.values[0])
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)

    logbook = tools.Logbook()
    logbook.header = ["gen", "evals"] + stats.fields

    toolbox = Toolbox()
    toolbox.register("generate", generate)
    toolbox.register(
        "evaluate",
        fit_converter(
            ga_functions.build_fitness(empty_fixed_schedule_part, 0.0)))
    toolbox.register("clone", deepcopy)
    toolbox.register("mate", ga_functions.crossover)
    toolbox.register("sweep_mutation", ga_functions.sweep_mutation)
    toolbox.register("mutate", ga_functions.mutation)
    # toolbox.register("select_parents", )
    # toolbox.register("select", tools.selTournament, tournsize=4)
    toolbox.register("select", tools.selRoulette)
    pop, logbook, best = run_ga(toolbox=toolbox,
                                logbook=logbook,
                                stats=stats,
                                **GA_PARAMS)

    resulted_schedule = ga_functions.build_schedule(best,
                                                    empty_fixed_schedule_part,
                                                    0.0)

    Utility.validate_static_schedule(_wf, resulted_schedule)

    ga_makespan = Utility.makespan(resulted_schedule)
    return ga_makespan
Exemple #5
0
def do_exp(wf_name):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0, transf_time_cost=0, transferMx=None,
                                                ideal_flops=20, transfer_time=100)

    empty_fixed_schedule_part = Schedule({node: [] for node in rm.get_nodes()})

    heft_schedule = run_heft(_wf, rm, estimator)

    ga_functions = GAFunctions2(_wf, rm, estimator)

    generate = partial(ga_generate, ga_functions=ga_functions,
                               fixed_schedule_part=empty_fixed_schedule_part,
                               current_time=0.0, init_sched_percent=0.05,
                               initial_schedule=heft_schedule)


    stats = tools.Statistics(lambda ind: ind.fitness.values[0])
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)

    logbook = tools.Logbook()
    logbook.header = ["gen", "evals"] + stats.fields

    toolbox = Toolbox()
    toolbox.register("generate", generate)
    toolbox.register("evaluate", fit_converter(ga_functions.build_fitness(empty_fixed_schedule_part, 0.0)))
    toolbox.register("clone", deepcopy)
    toolbox.register("mate", ga_functions.crossover)
    toolbox.register("sweep_mutation", ga_functions.sweep_mutation)
    toolbox.register("mutate", ga_functions.mutation)
    # toolbox.register("select_parents", )
    # toolbox.register("select", tools.selTournament, tournsize=4)
    toolbox.register("select", tools.selRoulette)
    pop, logbook, best = run_ga(toolbox=toolbox,
                                logbook=logbook,
                                stats=stats,
                                **GA_PARAMS)

    resulted_schedule = ga_functions.build_schedule(best, empty_fixed_schedule_part, 0.0)

    Utility.validate_static_schedule(_wf, resulted_schedule)

    ga_makespan = Utility.makespan(resulted_schedule)
    return ga_makespan
Exemple #6
0
    def test_fixed_ordering(self):
        _wf = wf("Montage_25")
        rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
        estimator = SimpleTimeCostEstimator(comp_time_cost=0, transf_time_cost=0, transferMx=None,
                                            ideal_flops=20, transfer_time=100)
        sorted_tasks = HeftHelper.heft_rank(_wf, rm, estimator)

        heft_schedule = run_heft(_wf, rm, estimator)
        heft_mapping = schedule_to_position(heft_schedule)

        heft_gen = lambda: heft_mapping if random.random() > 0.95 else generate(_wf, rm, estimator)


        toolbox = Toolbox()
        # toolbox.register("generate", generate, _wf, rm, estimator)
        toolbox.register("generate", heft_gen)
        toolbox.register("fitness", fitness, _wf, rm, estimator, sorted_tasks)

        toolbox.register("force_vector_matrix", force_vector_matrix, rm)
        toolbox.register("velocity_and_position", velocity_and_position, _wf, rm, estimator)
        toolbox.register("G", G)
        toolbox.register("kbest", Kbest)

        statistics = Statistics()
        statistics.register("min", lambda pop: numpy.min([p.fitness.mofit for p in pop]))
        statistics.register("avr", lambda pop: numpy.average([p.fitness.mofit for p in pop]))
        statistics.register("max", lambda pop: numpy.max([p.fitness.mofit for p in pop]))
        statistics.register("std", lambda pop: numpy.std([p.fitness.mofit for p in pop]))

        logbook = Logbook()
        logbook.header = ("gen", "G", "kbest", "min", "avr", "max", "std")

        pop_size = 100
        iter_number = 100
        kbest = pop_size
        ginit = 5

        final_pop = run_gsa(toolbox, statistics, logbook, pop_size, iter_number, kbest, ginit)

        best = min(final_pop, key=lambda x: toolbox.fitness(x).mofit)
        solution = {MAPPING_SPECIE: list(zip(sorted_tasks, best)), ORDERING_SPECIE: sorted_tasks}
        schedule = build_schedule(_wf, estimator, rm, solution)
        Utility.validate_static_schedule(_wf, schedule)
        makespan = Utility.makespan(schedule)
        print("Final makespan: {0}".format(makespan))

        pass
Exemple #7
0
def do_exp(wf_name, **params):

    _wf = wf(wf_name)

    ga_makespan, heft_make, ga_schedule, heft_sched = MixRunner()(_wf,
                                                                  **params)

    rm = ExperimentResourceManager(rg.r(params["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0,
                                        transf_time_cost=0,
                                        transferMx=None,
                                        ideal_flops=params["ideal_flops"],
                                        transfer_time=params["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "heft": {
            "makespan":
            heft_makespan,
            "overall_transfer_time":
            Utility.overall_transfer_time(heft_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(heft_schedule)
        },
        "ga": {
            "makespan":
            ga_makespan,
            "overall_transfer_time":
            Utility.overall_transfer_time(ga_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(ga_schedule)
        },
        #"heft_schedule": heft_schedule,
        #"ga_schedule": ga_schedule
    }

    return data
Exemple #8
0
def do_exp(wf_name, **params):

    _wf = wf(wf_name)

    ga_makespan, heft_make, ga_schedule, heft_sched, logbook = MixRunner()(_wf, **params)

    rm = ExperimentResourceManager(rg.r(params["nodes_conf"]))
    estimator = TestEstimator(comp_time_cost=0, transf_time_cost=0, bandwidth=float(params["data_intensive_coeff"]), transferMx=None,
                                    ideal_flops=params["ideal_flops"], max_size=float(params["max_size"]),
                                    transfer_time=params["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)
    # print("Heft schedule:")
    # print(heft_schedule)
    # print("Heft makespan: {0}".format(heft_makespan))
    # print("GA schedule:")
    # print(ga_schedule)
    # print("GA makespan: {0}".format(ga_makespan))

    data = {
        "wf_name": wf_name,
        "params": params,
        "heft": {
            "makespan": heft_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(heft_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(heft_schedule)
        },
        "ga": {
            "makespan": ga_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(ga_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(ga_schedule)
        },
        "logbook": logbook
        #"heft_schedule": heft_schedule,
        #"ga_schedule": ga_schedule
    }

    return data
    Velocity, Position
from heft.core.CommonComponents.ExperimentalManagers import ExperimentResourceManager
from heft.core.environment.Utility import Utility, wf
from heft.algs.common.mapordschedule import build_schedule, MAPPING_SPECIE, ORDERING_SPECIE, ordering_from_schedule, \
    mapping_from_schedule
from heft.experiments.cga.mobjective.utility import SimpleTimeCostEstimator
from heft.core.environment.ResourceGenerator import ResourceGenerator as rg
from heft.algs.common.mapordschedule import fitness as basefitness

_wf = wf("Montage_50")
rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
estimator = SimpleTimeCostEstimator(comp_time_cost=0, transf_time_cost=0, transferMx=None,
                                            ideal_flops=20, transfer_time=100)
sorted_tasks = HeftHelper.heft_rank(_wf, rm, estimator)

heft_schedule = run_heft(_wf, rm, estimator)

print(Utility.makespan(heft_schedule))




stats = tools.Statistics(lambda ind: ind.fitness.values[0])
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
Exemple #10
0
from heft.algs.common.mapordschedule import build_schedule, MAPPING_SPECIE, ORDERING_SPECIE
from heft.experiments.aggregate_utilities import interval_statistics, interval_stat_string
from heft.experiments.cga.mobjective.utility import SimpleTimeCostEstimator
from heft.core.environment.ResourceGenerator import ResourceGenerator as rg
from heft.experiments.cga.utilities.common import repeat

_wf = wf("Montage_75")
rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
estimator = SimpleTimeCostEstimator(comp_time_cost=0,
                                    transf_time_cost=0,
                                    transferMx=None,
                                    ideal_flops=20,
                                    transfer_time=100)
sorted_tasks = HeftHelper.heft_rank(_wf, rm, estimator)

heft_schedule = run_heft(_wf, rm, estimator)
heft_mapping = schedule_to_position(heft_schedule)

heft_mapping.velocity = MappingParticle.Velocity({})

heft_gen = lambda n: [
    deepcopy(heft_mapping)
    if random.random() > 1.0 else generate(_wf, rm, estimator, 1)[0]
    for _ in range(n)
]

W, C1, C2 = 0.1, 0.6, 0.2
GEN, N = 300, 50

toolbox = Toolbox()
toolbox.register("population", heft_gen)
Exemple #11
0
 def heft_schedule(self):
     if not self._heft_schedule:
         self._heft_schedule = run_heft(self._wf, self._rm, self._estimator)
     return self._heft_schedule