def evolve_policy(self): """ Learn a model from flightdata and evolve specialized policies. """ params = model.estimate_params(self.log.name) noise_std = model.estimate_std(self.log.name, params) heli = ghh.Helicopter(params, noise_std, 0.1) genome = Genome.open(PREFIX + 'baseline.net') self.org = functions.evolve(heli, genome, epochs=500)
def evolve_policy(self, n=1): """ Learn a model from flightdata and evolve specialized policies. """ params = model.estimate_params(self.log.name) noise_std = model.estimate_std(self.log.name, params) heli = ghh.Helicopter(params, noise_std, 0.1) genome = Genome.open(PREFIX + 'baseline.net') for i in range(n): champion = functions.evolve(heli, genome, epochs=500) champion.evals = list() self.pool.append(champion)