Exemple #1
0
def main():
    out_folder = hp.create_folder('Release_check')
    main_log = open(os.path.join(out_folder, 'Main.log'), 'w+')

    for library in args.paths:
        while library[-1] == '/':
            library = library[:-1]
        individual_log = open(os.path.join(out_folder, library.split('')), 'w+')

        if not os.path.isdir(library):
            individual_log.write('Folder not found\nFAIL')
            individual_log.close()
            main_log.write("{} folder doesn't exist: Fail")
            # Skip because folder doesn't exist
            continue
        messages = []

        # counts lib, db and aocv files
        lib_count = hp.count_files(os.path.join(MODELS_FOLDER, '*/.lib'))
        db_count = hp.count_files(os.path.join(MODELS_FOLDER, '*/.db'))
        aocv_count = hp.count_files(os.path.join(MODELS_FOLDER, '*/.aocv'))

        # checks if all dbs are newer than their lib counterparts
        lib_files = glob(os.path.join(MODELS_FOLDER, '*/.lib'))
        db_files = glob(os.path.join(MODELS_FOLDER, '*/.lib'))
        for db in db_files:
            for lib in lib_files:
                if lib.replace('.lib', '.db') == db:
                    if os.path.getatime(lib) < os.path.getatime():
                        messages.append('Error lib is newer than db for {}'.format(lib))
                    break
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = os.path.join('./runs', str(time.time()))
    helper.create_folder(runs_dir)
    tests.test_for_kitti_dataset(data_dir)

    # Download pretrained vgg model
    helper.maybe_download_pretrained_vgg(data_dir)

    with tf.Session() as sess:
        epochs = 48
        batch_size = 5
        correct_label = tf.placeholder(tf.int32,
                                       [None, None, None, num_classes],
                                       name='correct_label')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        # Path to vgg model
        vgg_path = os.path.join(data_dir, 'vgg')
        # Create function to get batches
        get_batches_fn = helper.gen_batch_function(
            os.path.join(data_dir, 'data_road/training'), image_shape)

        image_input, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(
            sess, vgg_path)
        output = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out,
                        num_classes)
        logits, train_op, cross_entropy_loss = optimize(
            output, correct_label, learning_rate, num_classes)

        train_nn(sess, epochs, batch_size, get_batches_fn, train_op,
                 cross_entropy_loss, image_input, correct_label, keep_prob,
                 learning_rate)

        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                      logits, keep_prob, image_input)
Exemple #3
0
def main():
    # Display Banner
    banner.banner()

    # Define Target
    target = input(Fore.GREEN + "[!] Enter Target IP: ")

    # Call Helper and Menu Functions
    file_location = h.dict_file()
    ssl = h.check_ssl()
    folder_name = h.create_folder()
    inp = menu.display_menu()

    # Start Scan
    start.start_scan(file_location, folder_name, ssl, target, inp)
Exemple #4
0
        temples['imgUrl_5'] = xls.GetSheetValue(row, col_imgUrl_5)

        temples['place'] = xls.GetSheetValue(row, col_place)
        temples['surPlace'] = helper.remove_substring(
            xls.GetSheetValue(row, col_place))
        temples['longBrief'] = helper.capitalize_first(
            xls.GetSheetValue(row, col_longBrief)) \
                .replace('\t', ' ').replace('  ', ' ')

        temples['srcUrl'] = xls.GetSheetValue(row, col_srcUrl)
        temples['eparchyUrl'] = xls.GetSheetValue(row, col_eparchyUrl)
        temples['abbots'] = helper.capitalize_first(
            xls.GetSheetValue(row, col_abbots))

        entities.append(temples)
    except Exception as e:
        print(f'Exception input line in row {row}: {temples}')
        raise Exception(e)

helper.clear_folder(helper.get_full_path(root_folder))
helper.create_folder(helper.get_full_path(root_folder))

for i in range(len(entities)):
    item = entities[i]
    filename = 'file{}.json'.format(i)
    filename = helper.get_full_path(os.path.join(root_folder, filename))
    helper.save_json(item, filename)

print("Completed read to json files")
exit(0)
Exemple #5
0
    cell_path = os.path.join(general_path, file_name_all[:-5])

    # load parameters
    with file(os.path.join(general_path, file_name_all), 'r') as fid:
        all_params = json.load(fid)

    cell_param_path = os.path.join(cell_path, 'cell/params', file_name_cell)
    with file(cell_param_path, 'r') as fid:
        cell_params = json.load(fid)

    new_cell_params, results = initiate_all(all_params=all_params, cell_params=cell_params,
                                            sim_neuron=sim_neuron, sim_field=sim_field)

    # save results v_ext, dipole, etc
    cell_results_path = os.path.join(cell_path, 'cell/results')
    hl.create_folder(cell_results_path)
    save_file = os.path.join(cell_results_path, file_name_cell[:-5] + '.npz')

    if sim_neuron and sim_field:
        # simulate all
        np.savez(save_file, xx=results['xx'],yy =results['yy'],Q=results['Q'],Q_len=results['Q_len'],
             I=results['I'], I_axial=results['I_axial'],v_ext=results['v_ext'],ppt_vecs=results['ppt_vecs'],
             seg_coords=results['seg_coords'], v_soma=results['v_soma'])
    elif sim_neuron:
        # simulate only neuron but not field
        np.savez(save_file, I=results['I'], I_axial=results['I_axial'],ppt_vecs=results['ppt_vecs'],
             seg_coords=results['seg_coords'], v_soma=results['v_soma'])
    else:
        # only get the structure of the neuron
        np.savez(save_file, ppt_vecs=results['ppt_vecs'], seg_coords=results['seg_coords'])