def setUp(self): # load raw data for analysis self.neighbors_data = json.loads( open(fixture_file('neighbors_getis.json')).read()) # load pre-computed/known values self.getis_data = json.loads(open(fixture_file('getis.json')).read())
def setUp(self): # load raw data for analysis self.neighbors_data = json.loads( open(fixture_file('neighbors_getis.json')).read()) # load pre-computed/known values self.getis_data = json.loads( open(fixture_file('getis.json')).read())
def setUp(self): """ fixture packed from canonical GWR georgia dataset using the following query: SELECT array_agg(x) As x, array_agg(y) As y, array_agg(pctbach) As dep_var, array_agg(pctrural) As attr1, array_agg(pctpov) As attr2, array_agg(pctblack) As attr3, array_agg(areakey) As rowid FROM g_utm WHERE pctbach is not NULL AND pctrural IS NOT NULL AND pctpov IS NOT NULL AND pctblack IS NOT NULL """ import copy # data packed from https://github.com/TaylorOshan/pysal/blob/1d6af33bda46b1d623f70912c56155064463383f/pysal/examples/georgia/GData_utm.csv self.data = json.loads( open(fixture_file('gwr_packed_data.json')).read()) # data packed from https://github.com/TaylorOshan/pysal/blob/a44c5541e2e0d10a99ff05edc1b7f81b70f5a82f/pysal/examples/georgia/georgia_BS_NN_listwise.csv self.knowns = json.loads( open(fixture_file('gwr_packed_knowns.json')).read()) # data for GWR prediction self.data_predict = copy.deepcopy(self.data) self.ids_of_unknowns = [13083, 13009, 13281, 13115, 13247, 13169] self.idx_ids_of_unknowns = [ self.data_predict[0]['rowid'].index(idx) for idx in self.ids_of_unknowns ] for idx in self.idx_ids_of_unknowns: self.data_predict[0]['dep_var'][idx] = None self.predicted_knowns = { 13009: 10.879, 13083: 4.5259, 13115: 9.4022, 13169: 6.0793, 13247: 8.1608, 13281: 13.886 } # params, with ind_vars in same ordering as query above self.params = { 'subquery': 'select * from table', 'dep_var': 'pctbach', 'ind_vars': ['pctrural', 'pctpov', 'pctblack'], 'bw': 90.000, 'fixed': False, 'geom_col': 'the_geom', 'id_col': 'areakey' }
def setUp(self): plpy._reset() self.params = {"id_col": "cartodb_id", "attr1": "andy", "attr2": "jay_z", "table": "a_list", "geom_col": "the_geom", "num_ngbrs": 321} self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read()) self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def setUp(self): plpy._reset() self.params = {"id_col": "cartodb_id", "attr1": "andy", "attr2": "jay_z", "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321} self.params_markov = {"id_col": "cartodb_id", "time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"], "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321} self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read()) self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def setUp(self): self.params = { "id_col": "cartodb_id", "attr1": "andy", "attr2": "jay_z", "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321, } self.params_markov = { "id_col": "cartodb_id", "time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"], "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321, } self.neighbors_data = json.loads(open(fixture_file("neighbors.json")).read()) self.moran_data = json.loads(open(fixture_file("moran.json")).read())
def setUp(self): plpy._reset() self.params = { "id_col": "cartodb_id", "time_cols": ['dec_2013', 'jan_2014', 'feb_2014'], "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321 } self.neighbors_data = json.loads( open(fixture_file('neighbors_markov.json')).read()) self.markov_data = json.loads(open(fixture_file('markov.json')).read()) self.time_data = np.array( [i * np.ones(10, dtype=float) for i in range(10)]).T self.transition_matrix = np.array( [[[0.96341463, 0.0304878, 0.00609756, 0., 0.], [0.06040268, 0.83221477, 0.10738255, 0., 0.], [0., 0.14, 0.74, 0.12, 0.], [0., 0.03571429, 0.32142857, 0.57142857, 0.07142857], [0., 0., 0., 0.16666667, 0.83333333]], [[0.79831933, 0.16806723, 0.03361345, 0., 0.], [0.0754717, 0.88207547, 0.04245283, 0., 0.], [0.00537634, 0.06989247, 0.8655914, 0.05913978, 0.], [0., 0., 0.06372549, 0.90196078, 0.03431373], [0., 0., 0., 0.19444444, 0.80555556]], [[0.84693878, 0.15306122, 0., 0., 0.], [0.08133971, 0.78947368, 0.1291866, 0., 0.], [0.00518135, 0.0984456, 0.79274611, 0.0984456, 0.00518135], [0., 0., 0.09411765, 0.87058824, 0.03529412], [0., 0., 0., 0.10204082, 0.89795918]], [[0.8852459, 0.09836066, 0., 0.01639344, 0.], [0.03875969, 0.81395349, 0.13953488, 0., 0.00775194], [0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505], [0., 0.02339181, 0.12865497, 0.75438596, 0.09356725], [0., 0., 0., 0.09661836, 0.90338164]], [[0.33333333, 0.66666667, 0., 0., 0.], [0.0483871, 0.77419355, 0.16129032, 0.01612903, 0.], [0.01149425, 0.16091954, 0.74712644, 0.08045977, 0.], [0., 0.01036269, 0.06217617, 0.89637306, 0.03108808], [0., 0., 0., 0.02352941, 0.97647059]]])
def setUp(self): self.params = {"id_col": "cartodb_id", "time_cols": ['dec_2013', 'jan_2014', 'feb_2014'], "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321} self.neighbors_data = json.loads( open(fixture_file('neighbors_markov.json')).read()) self.markov_data = json.loads(open(fixture_file('markov.json')).read()) self.time_data = np.array([i * np.ones(10, dtype=float) for i in range(10)]).T self.transition_matrix = np.array([ [[0.96341463, 0.0304878, 0.00609756, 0., 0.], [0.06040268, 0.83221477, 0.10738255, 0., 0.], [0., 0.14, 0.74, 0.12, 0.], [0., 0.03571429, 0.32142857, 0.57142857, 0.07142857], [0., 0., 0., 0.16666667, 0.83333333]], [[0.79831933, 0.16806723, 0.03361345, 0., 0.], [0.0754717, 0.88207547, 0.04245283, 0., 0.], [0.00537634, 0.06989247, 0.8655914, 0.05913978, 0.], [0., 0., 0.06372549, 0.90196078, 0.03431373], [0., 0., 0., 0.19444444, 0.80555556]], [[0.84693878, 0.15306122, 0., 0., 0.], [0.08133971, 0.78947368, 0.1291866, 0., 0.], [0.00518135, 0.0984456, 0.79274611, 0.0984456, 0.00518135], [0., 0., 0.09411765, 0.87058824, 0.03529412], [0., 0., 0., 0.10204082, 0.89795918]], [[0.8852459, 0.09836066, 0., 0.01639344, 0.], [0.03875969, 0.81395349, 0.13953488, 0., 0.00775194], [0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505], [0., 0.02339181, 0.12865497, 0.75438596, 0.09356725], [0., 0., 0., 0.09661836, 0.90338164]], [[0.33333333, 0.66666667, 0., 0., 0.], [0.0483871, 0.77419355, 0.16129032, 0.01612903, 0.], [0.01149425, 0.16091954, 0.74712644, 0.08045977, 0.], [0., 0.01036269, 0.06217617, 0.89637306, 0.03108808], [0., 0., 0., 0.02352941, 0.97647059]]] )
def setUp(self): self.params = { "query": 'SELECT * FROM segmentation_data', "variable": 'price', "feature_columns": ['m1', 'm2', 'm3', 'm4', 'm5', 'm6'], "target_query": 'SELECT * FROM segmentation_result', "id_col": 'cartodb_id', "model_params": { 'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1 } } self.model_data = json.loads( open(fixture_file('model_data.json')).read()) self.data = json.loads(open(fixture_file('data.json')).read()) self.predict_data = json.loads( open(fixture_file('predict_data.json')).read()) self.result_seg = json.loads( open(fixture_file('segmentation_result.json')).read()) self.true_result = json.loads( open(fixture_file('true_result.json')).read())
def setUp(self): self.cluster_data = json.loads( open(fixture_file('kmeans.json')).read()) self.params = {"subquery": "select * from table", "no_clusters": "10"}
def setUp(self): plpy._reset() self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read()) self.params = {"subquery": "select * from table", "no_clusters": "10" }