Exemple #1
0
 def rhinge_loss(self, X, targets):
     """
     returns reverse hinge loss of points in X and their targets
     """
     preds = np.matmul(X, self.weights.T) + self.bias
     res = []
     for i in xrange(len(X)):
         target = targets[i]
         if np.argmax(preds) != target:
             max_ix, max_val = getMax(preds[i], target)
             loss = max_val - preds[i][target]
         else:
             loss = 0
         res.append(loss)
     return res
Exemple #2
0
    def untargeted_loss(self, X, Y):
        """
        computes the untargeted hinge loss of (X, Y)
        """
        preds = np.matmul(X, self.weights.T) + self.bias
        n = len(X)
        loss = []

        for i in xrange(n):
            y = Y[i]
            others = range(10)
            del others[y]
            if np.argmax(preds[i]) != y:
                res = 0
            else:
                max_val = getMax(preds[i], y)[1]
                y_val = preds[i][y]
                res = y_val - max_val
            loss.append(res)
        return np.array(loss)
Exemple #3
0
    def gradient_untargeted(self, X, Y):
        """
        computes gradients the untargeted hinge loss of (X, Y)
        """
        preds = np.matmul(X, self.weights.T) + self.bias
        n = len(X)
        gradient = []

        for i in xrange(n):
            y = Y[i]
            others = range(10)
            del others[y]
            if np.argmax(preds[i]) != y:
                res = np.zeros(self.dim)
            else:
                max_ix = getMax(preds[i], y)[0]
                w_max = self.weights[max_ix]
                w_y = self.weights[y]
                res = w_y - w_max
            gradient.append(res)
        return np.array(gradient)
Exemple #4
0
    def gradient(self, X, targets):
        """
        returns gradient of the reverse (targeted) hinge loss
        """
        preds = np.matmul(X, self.weights.T) + self.bias
        n = X.shape[0]

        gradient = []

        for i in xrange(n):
            target = targets[i]
            others = range(10)
            del others[target]

            if np.argmax(preds[i]) == target:
                res = np.zeros(self.dim)
            else:
                max_ix = getMax(preds[i], target)[0]
                w_max = self.weights[max_ix]
                w_target = self.weights[target]
                res = w_max - w_target
            gradient.append(res)
        return np.array(gradient)