Exemple #1
0
def astar(maze, start, goal):

    pq = PriorityQueue()
    pq.put(start, 0)
    predecessor = {start: None}
    g_value = {start: 0}

    while not pq.is_empty():

        current_cell = pq.get()

        if current_cell == goal:
            return get_path(predecessor, start, goal)

        for directions in ["up", "right", "down", "left"]:
            row_offset, col_offset = offsets[directions]
            neighbor = (current_cell[0] + row_offset,
                        current_cell[1] + col_offset)

            if is_legal_pos(maze, neighbor) and neighbor not in g_value:
                g_value[neighbor] = g_value[current_cell] + 1
                f_value = g_value[neighbor] + heuristic(neighbor, goal)
                pq.put(neighbor, f_value)
                predecessor[neighbor] = current_cell

    return None
Exemple #2
0
def uploader():
    if request.method == 'POST':
        file = request.files['file']
        original = file.filename
        ext = get_extension(file.filename)

        file.filename = generate_filename()

        file.save(get_path(secure_filename(file.filename) + ext))

        print(secure_filename(file.filename))
        flash('File: \'{}\' uploaded'.format(original))
        return render_template('index.html')
Exemple #3
0
def bfs(maze, start, goal): 

	q = Queue()
	q.enqueue(start)
	predecessors = {start: None}

	while not q.is_empty(): 
		
		current_cell = q.dequeue()

		if current_cell == goal: 
			return get_path(predecessors, start, goal)
		
		for directions in ["up","right","down","left"]: 
			row_offset, col_offset = offsets[directions] 
			neighbor = (current_cell[0]+row_offset, current_cell[1]+col_offset)
			
			if is_legal_pos(maze, neighbor) and neighbor not in predecessors: 
				q.enqueue(neighbor)
				predecessors[neighbor] = current_cell
				
	return None
Exemple #4
0
def dfs(maze, start, goal): 

	stack = Stack()
	stack.push(start)
	predecessors = {start: None}

	while not stack.is_empty(): 
		#print(stack)
		current_cell = stack.pop()

		if current_cell == goal: 
			return get_path(predecessors, start, goal)
		
		for directions in ["up","right","down","left"]: 
			row_offset, col_offset = offsets[directions] 
			neighbor = (current_cell[0]+row_offset, current_cell[1]+col_offset)
			
			if is_legal_pos(maze, neighbor) and neighbor not in predecessors: 
				stack.push(neighbor)
				#print(stack)
				predecessors[neighbor] = current_cell
				
	return None
        .reduceByKey(lambda x, y: x + y).collect()

    topics = sorted(counts, reverse=True, key=lambda x: x[1])

    # # train test split
    for topicN in [5, 10, 15, 20]:
        selected = [t[0] for t in topics[:topicN]]

        filtered = group_rdd \
            .filter(lambda x: x[0] in selected)
        descriptions = filtered.map(lambda x: x[1]).collect()
        labels = filtered.map(lambda x: x[0]).collect()

        # mapping topic names to ids
        mapping = load_topic_mapping()
        labels = [mapping[l] for l in labels]

        # train test split
        X_train, X_test, y_train, y_test = train_test_split(
            descriptions, labels, test_size=0.2, random_state=42
        )
        train = (X_train, y_train)
        test = (X_test, y_test)
        # file name
        data_path = get_path('data', 'documents')
        train_file = os.path.join(data_path, f'train_{topicN:02d}')
        test_file = os.path.join(data_path, f'test_{topicN:02d}')
        # save
        pickle.dump(train, open(train_file, 'wb'))
        pickle.dump(test, open(test_file, 'wb'))
def load_file(dir_name, file_name):
    file = get_path('results', dir_name, file_name)
    pickle.load(open(file, 'rb'))
def save_file(to_save, dir_name, file_name):
    file = get_path('results', dir_name, file_name)
    pickle.dump(to_save, open(file, 'wb'))
def load_dataset(data_type, topic_num):
    file = get_path('data', 'documents', f'{data_type}_{topic_num:02d}')
    return pickle.load(open(file, 'rb'))
def load_model_info():
    file = get_path('data', 'models_info.json')
    return json.load(open(file, 'r'))
Exemple #10
0
Ruosi Wang [email protected]
"""
from helper import load_cities, get_path
from spark_data import make_DF

import os
import numpy as np
from datetime import datetime
from pytz import timezone

from pyspark import SparkContext
from pyspark.sql import types
import pyspark.sql.functions as F
from pyspark.sql.functions import col, udf

occurrence_path = get_path('results', 'EDA', 'occurrence')
venues_path = get_path('results', 'EDA', 'venues')
# ------------------------------------------------- #
# helper functions for transforming datetime


def floor_req(val):
    if val >= 2:
        return 1
    else:
        return 0


def timezone_convert(dt, tz):
    return dt.astimezone(timezone(tz))
import pickle
import os
import time
import numpy as np

from sklearn.metrics import confusion_matrix, f1_score, accuracy_score
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC


models_path = get_path('results', 'models')


def build_SKM(model_type=None, max_features=None, selectK=None, params={}):
    if not model_type:
        raise NameError('model_type is not defined')
    # Multinomial Naive Bayes
    if model_type == 'MNB':
        alpha = params.get('alpha', .01)
        pipe = Pipeline([('MNB', MultinomialNB(alpha=alpha))])

    # Suport Vector Machine (Linear Kernel)
    if model_type == 'SVC':
        pipe = Pipeline([('SVC', SVC(kernel='linear'))])

    # Extra Tree Classifier