Exemple #1
0
def test(net, test_input_image_dir, direction):
    # prepare dataset
    test_dataset = helper.Dataset(test_input_image_dir,
                                  convert_to_lab_color=False,
                                  direction=direction,
                                  is_test=True)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('./checkpoints'))

        for ii in range(test_dataset.n_images):
            test_image = test_dataset.get_image_by_index(ii)
            test_a = [x for x, y in test_image]
            test_b = [y for x, y in test_image]
            test_a = np.array(test_a)
            test_b = np.array(test_b)

            gen_image = sess.run(generator(net.gen_inputs,
                                           net.input_channel,
                                           reuse=True,
                                           is_training=True),
                                 feed_dict={net.gen_inputs: test_a})

            image_fn = './assets/test_result{:d}_tf.png'.format(ii)
            helper.save_result(image_fn,
                               gen_image,
                               input_image=test_a,
                               target_image=test_b)
Exemple #2
0
def train(net, epochs, batch_size, train_input_image_dir, test_image, direction, dataset_name, print_every=30):
    losses = []
    steps = 0

    # prepare saver for saving trained model
    saver = tf.train.Saver()

    # prepare dataset
    train_dataset = helper.Dataset(train_input_image_dir, convert_to_lab_color=False, direction=direction, is_test=False)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            for ii in range(train_dataset.n_images//batch_size):
                steps += 1

                # will return list of tuples [ (inputs, targets), (inputs, targets), ... , (inputs, targets)]
                batch_images_tuple = train_dataset.get_next_batch(batch_size)

                a = [x for x, y in batch_images_tuple]
                b = [y for x, y in batch_images_tuple]
                a = np.array(a)
                b = np.array(b)

                fd = {
                    net.dis_inputs: a,
                    net.dis_targets: b,
                    net.gen_inputs: a
                }
                d_opt_out = sess.run(net.d_train_opt, feed_dict=fd)
                g_opt_out = sess.run(net.g_train_opt, feed_dict=fd)

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval(fd)
                    train_loss_g = net.g_loss.eval(fd)
                    train_loss_gan = net.gen_loss_GAN.eval(fd)
                    train_loss_l1 = net.gen_loss_L1.eval(fd)

                    print("Epoch {}/{}...".format(e + 1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss GAN: {:.4f}".format(train_loss_gan),
                          "Generator Loss L1: {:.4f}".format(train_loss_l1),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_gan))

            # save generated images on every epochs
            test_a = [x for x, y in test_image]
            test_a = np.array(test_a)
            gen_image = sess.run(generator(net.gen_inputs, net.input_channel, reuse=True, is_training=False),
                                 feed_dict={net.gen_inputs: test_a})
            image_fn = './assets/epoch_{:d}_tf.png'.format(e)
            helper.save_result(image_fn, gen_image)

        ckpt_fn = './checkpoints/pix2pix-{}.ckpt'.format(dataset_name)
        saver.save(sess, ckpt_fn)

    return losses
Exemple #3
0
def train(net,
          dataset_name,
          train_data_loader,
          val_data_loader,
          epochs,
          batch_size,
          print_every=30,
          save_every=100):
    losses = []
    steps = 0

    # prepare saver for saving trained model
    saver = tf.train.Saver()

    start_time = time.time()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for e in range(epochs):
            # shuffle data randomly at every epoch
            train_data_loader.reset()
            # val_data_loader.reset()

            for ii in range(train_data_loader.n_images // batch_size):
                steps += 1

                batch_image_u, batch_image_v = train_data_loader.get_next_batch(
                    batch_size)

                net.run_optim(sess, batch_image_u, batch_image_v, steps,
                              start_time)

                if steps % save_every == 0:
                    # save generated images on every epochs
                    random_index = np.random.randint(0,
                                                     val_data_loader.n_images)
                    test_image_u, test_image_v = val_data_loader.get_image_by_index(
                        random_index)
                    fd_val = {
                        net.real_A: test_image_u,
                        net.real_B: test_image_v
                    }
                    g_image_u_to_v_to_u, g_image_u_to_v = sess.run(
                        [net.A2B2A, net.A2B], feed_dict=fd_val)
                    g_image_v_to_u_to_v, g_image_v_to_u = sess.run(
                        [net.B2A2B, net.B2A], feed_dict=fd_val)

                    image_fn = './assets/{:s}/epoch_{:d}-{:d}_tf.png'.format(
                        dataset_name, e, steps)
                    helper.save_result(image_fn, test_image_u, g_image_u_to_v,
                                       g_image_u_to_v_to_u, test_image_v,
                                       g_image_v_to_u, g_image_v_to_u_to_v)

        ckpt_fn = './checkpoints/DualGAN-{:s}.ckpt'.format(dataset_name)
        saver.save(sess, ckpt_fn)

    return losses
def test(net, dataset_name, val_data_loader):
    ckpt_fn = './checkpoints/DualGAN-{:s}.ckpt'.format(dataset_name)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, ckpt_fn)

        for ii in range(val_data_loader.n_images):
            test_image_u, test_image_v = val_data_loader.get_image_by_index(ii)

            gen_A_out, gen_AB_out = sess.run(
                [net.gen_A_out, net.gen_AB_out],
                feed_dict={net.input_u: test_image_u})
            gen_B_out, gen_BA_out = sess.run(
                [net.gen_B_out, net.gen_BA_out],
                feed_dict={net.input_v: test_image_v})

            image_fn = './assets/{:s}/{:s}_result_{:04d}_tf.png'.format(
                dataset_name, dataset_name, ii)
            helper.save_result(image_fn, test_image_u, gen_A_out, gen_AB_out,
                               test_image_v, gen_B_out, gen_BA_out)
Exemple #5
0
def train(net,
          dataset_name,
          train_data_loader,
          val_data_loader,
          epochs,
          batch_size,
          print_every=30,
          save_every=100):
    steps = 0
    discriminator_losses, generator_losses = [], []

    # prepare saver for saving trained model
    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for e in range(epochs):
            # shuffle data randomly at every epoch
            train_data_loader.reset()
            # val_data_loader.reset()
            epoch_disc_loss, epoch_gen_loss = [], []

            for ii in range(train_data_loader.n_images // batch_size):
                steps += 1

                batch_image_u, batch_image_v = train_data_loader.get_next_batch(
                    batch_size)

                fd = {net.input_u: batch_image_u, net.input_v: batch_image_v}

                _ = sess.run(net.d_train_opt, feed_dict=fd)
                _ = sess.run(net.g_train_opt, feed_dict=fd)
                _ = sess.run(net.g_train_opt, feed_dict=fd)

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval(fd)
                    train_loss_g = net.g_loss.eval(fd)
                    train_loss_A_l1 = net.gen_A_l1_loss.eval(fd)
                    train_loss_B_l1 = net.gen_B_l1_loss.eval(fd)

                    epoch_disc_loss.append(train_loss_d)
                    epoch_gen_loss.append(train_loss_g)

                    # print(f"This epoch, discriminator loss {epoch_disc_loss}, generator loss {epoch_gen_loss}")
                    # to provide visual feedback during the process.
                    print("Epoch {}/{}...".format(e + 1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g),
                          "A-L1 Loss: {:.4f}".format(train_loss_A_l1),
                          "B-L1 Loss: {:.4f}".format(train_loss_B_l1))

                if steps % save_every == 0:
                    # save generated images on every epochs
                    random_index = np.random.randint(0,
                                                     val_data_loader.n_images)
                    test_image_u, test_image_v = val_data_loader.get_image_by_index(
                        random_index)
                    gen_A_out, gen_AB_out = sess.run(
                        [net.gen_A_out, net.gen_AB_out],
                        feed_dict={net.input_u: test_image_u})
                    gen_B_out, gen_BA_out = sess.run(
                        [net.gen_B_out, net.gen_BA_out],
                        feed_dict={net.input_v: test_image_v})

                    image_fn = './assets/{:s}/epoch_{:d}-{:d}_tf.png'.format(
                        dataset_name, e, steps)
                    helper.save_result(image_fn, test_image_u, gen_A_out,
                                       gen_AB_out, test_image_v, gen_B_out,
                                       gen_BA_out)

            discriminator_losses.append(
                sum(epoch_disc_loss) / len(epoch_disc_loss))
            generator_losses.append(sum(epoch_gen_loss) / len(epoch_gen_loss))
            # print(f"After epoch {e+1}, discriminator loss {discriminator_losses}, generator loss {generator_losses}")
            print(30 * "=")

        # save checkpoint
        ckpt_fn = './checkpoints/DualGAN-{:s}.ckpt'.format(dataset_name)
        saver.save(sess, ckpt_fn)

    epoch_list = [i for i in range(1, epochs + 1)]

    # Single plot for discriminator and generator losses.
    plt.figure()
    plt.plot(epoch_list,
             discriminator_losses,
             color='red',
             label='Discriminator')
    plt.plot(epoch_list,
             generator_losses,
             color='blue',
             label='Generator',
             linestyle='dashed')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend(loc="upper left")
    plt.savefig('./assets/loss_single_plot.png')
    plt.close()

    # 2 Subplots in 1 figure for generator and discriminator losses.
    plt.figure()
    plt.subplots_adjust(hspace=0.5, wspace=0.5)

    #Subplot 1
    plt.subplot(211)
    plt.title("Generator")
    plt.plot(epoch_list, generator_losses, color='blue', label='Generator')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')

    # Subplot 2
    plt.subplot(212)
    plt.title("Discriminator")
    plt.plot(epoch_list, discriminator_losses, color='red')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')

    plt.savefig('./assets/loss_subplots.png')
    plt.close()

    return
Exemple #6
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument('--model',
                        choices=["DQN", "DDPG"],
                        default="DDPG",
                        help='Reinforcement Learning Algorithms')

    parser.add_argument('--n_agent',
                        type=int,
                        default=5,
                        help='The number of agents')

    parser.add_argument('--sustainable_weight',
                        type=float,
                        default=0.5,
                        help='Weight of sustainability goal')

    parser.add_argument('--run_mode',
                        choices=["train", "test"],
                        default="train",
                        help='Train or test mode')

    args = parser.parse_args()

    with open('config/config.json', 'r') as f:
        conf = json.load(f)

    conf["hyper_parameter"]["sustainable_weight"] = args.sustainable_weight

    timestamp = datetime.now().strftime("%d-%m-%Y_%H-%M-%S")

    env_conf = conf["env"]
    save_result_path = Path(env_conf["log_path"]). \
        joinpath(f"{args.model}_model_{timestamp}_{args.sustainable_weight}_{args.n_agent}")

    save_model_path = os.path.join(save_result_path, "checkpoints")

    # Init game environment
    cpr = CPREnvironment(conf["hyper_parameter"])
    states = np.zeros((args.n_agent, env_conf["state_space"]))
    next_states = np.zeros((args.n_agent, env_conf["state_space"]))
    rewards = np.zeros(args.n_agent)

    # -------------- train mode --------------

    if args.run_mode == "train":
        # Init agents
        agents = list(
            map(lambda _: Agent(conf["model"][args.model]),
                range(args.n_agent)))

        avg_scores = []
        epsilon = env_conf["init_epsilon"]
        epoch = 0
        while epsilon >= env_conf["min_epsilon"]:
            # Reset Game Environment
            cpr.reset()
            efforts = np.array([env_conf["total_init_effort"] / args.n_agent] *
                               args.n_agent)
            score = 0.0
            for _ in range(env_conf["max_train_round"]):
                for i, agent in enumerate(agents):

                    if args.model == "DDPG":
                        action = agent.act(states[i],
                                           epsilon=epsilon,
                                           upper_bound=cpr.pool / args.n_agent)
                    else:
                        action = agent.act(states[i],
                                           epsilon=epsilon,
                                           pre_action=effort_list[i])

                    efforts[i] = action
                    agent.remember(states[i], action, rewards[i],
                                   next_states[i])

                next_states, rewards, done = cpr.step(efforts)
                score += sum(rewards) / args.n_agent
                if done:
                    break

            for agent in agents:
                agent.learn()

            print(f"epoch: {epoch}, score: {score}, e: {epsilon:.2}")
            epsilon -= env_conf["epsilon_decay"]
            epoch += 1
            avg_scores.append(score)

        for agent in agents:
            agent.close(save_model_path)

        helper.save_result({"train_avg_score.txt": avg_scores},
                           save_result_path)

    # -------------- test mode --------------

    elif args.run_mode == "test":
        # Init agents
        agent_list = [
            Agent("agent_{}".format(i), conf["model"][args.model],
                  save_model_path) for i in range(args.n_agent)
        ]

        avg_asset_seq = [0]
        pool_level_seq = []
        avg_score_seq = []

        for t in range(env_conf["max_test_round"]):
            pool_level_seq.append(cpr.pool)
            effort_list = [env_conf["total_init_effort"] / args.n_agent
                           ] * args.n_agent
            for i, agent in enumerate(agent_list):
                if args.model == "DDPG":
                    action = agent.act(states[i],
                                       upper_bound=cpr.pool / args.n_agent)
                elif args.model == "DQN":
                    action = agent.act(states[i], pre_action=effort_list[i])

                effort_list[i] = action
                agent.remember(states[i], action, rewards[i], next_states[i])
                effort_list[i] = action

            next_states, rewards, done = cpr.step(effort_list)

            avg_score_seq.append(sum(rewards) / args.n_agent)
            avg_asset_seq.append(avg_asset_seq[-1] +
                                 next_states[0][3] / args.n_agent)

            if done:
                break

        for agent in agent_list:
            agent.close()

        helper.save_result(
            {
                "test_avg_score.txt": avg_asset_seq,
                "test_assets.txt": avg_asset_seq,
                "test_resource_level.txt": pool_level_seq
            }, save_result_path)
def train(net,
          dataset_name,
          train_data_loader,
          val_data_loader,
          epochs,
          batch_size,
          print_every=30,
          save_every=100):
    steps = 0

    # prepare saver for saving trained model
    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for e in range(epochs):
            # shuffle data randomly at every epoch
            train_data_loader.reset()
            # val_data_loader.reset()

            for ii in range(train_data_loader.n_images // batch_size):
                steps += 1

                batch_image_u, batch_image_v = train_data_loader.get_next_batch(
                    batch_size)

                fd = {net.input_u: batch_image_u, net.input_v: batch_image_v}

                _ = sess.run(net.d_train_opt, feed_dict=fd)
                _ = sess.run(net.g_train_opt, feed_dict=fd)
                _ = sess.run(net.g_train_opt, feed_dict=fd)

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval(fd)
                    train_loss_g = net.g_loss.eval(fd)
                    train_loss_A_l1 = net.gen_A_l1_loss.eval(fd)
                    train_loss_B_l1 = net.gen_B_l1_loss.eval(fd)

                    print("Epoch {}/{}...".format(e + 1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g),
                          "A-L1 Loss: {:.4f}".format(train_loss_A_l1),
                          "B-L1 Loss: {:.4f}".format(train_loss_B_l1))

                if steps % save_every == 0:
                    # save generated images on every epochs
                    random_index = np.random.randint(0,
                                                     val_data_loader.n_images)
                    test_image_u, test_image_v = val_data_loader.get_image_by_index(
                        random_index)
                    gen_A_out, gen_AB_out = sess.run(
                        [net.gen_A_out, net.gen_AB_out],
                        feed_dict={net.input_u: test_image_u})
                    gen_B_out, gen_BA_out = sess.run(
                        [net.gen_B_out, net.gen_BA_out],
                        feed_dict={net.input_v: test_image_v})

                    image_fn = './assets/{:s}/epoch_{:d}-{:d}_tf.png'.format(
                        dataset_name, e, steps)
                    helper.save_result(image_fn, test_image_u, gen_A_out,
                                       gen_AB_out, test_image_v, gen_B_out,
                                       gen_BA_out)

        ckpt_fn = './checkpoints/DualGAN-{:s}.ckpt'.format(dataset_name)
        saver.save(sess, ckpt_fn)

    return