Exemple #1
0
def visualizeProductDistribution3(sess, input_dict, batch, obs_dist, transport_dist, rec_dist, sample_obs_dist, save_dir = '.', postfix = ''):
	
	sample = batch['observed']['data']
	sample_properties = batch['observed']['properties']
	for obs_type in ['flat', 'image']:
		if sample[obs_type] is not None:

			sample_split = helper.split_tensor_np(sample[obs_type], -1, [e['size'][-1] for e in obs_dist.sample_properties[obs_type]])
			param_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(obs_dist.dist_list[obs_type])]			
			transport_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(transport_dist.dist_list[obs_type])]			
			rec_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(rec_dist.dist_list[obs_type])]			
			rand_param_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(sample_obs_dist.dist_list[obs_type])]

			param_split, transport_split, rec_split, rand_param_split = sess.run([param_split_tf, transport_split_tf, rec_split_tf, rand_param_split_tf], feed_dict = input_dict)
			rand_param_split2 = None
			while rand_param_split2 is None or rand_param_split2.shape[0]<300:
				if rand_param_split2 is None: rand_param_split2 = sess.run(rand_param_split_tf, feed_dict = input_dict)[0]
				else: rand_param_split2 = np.concatenate([rand_param_split2, sess.run(rand_param_split_tf, feed_dict = input_dict)[0]], axis=0)
			samples_params_np = np.array([np.array([]), *sample_split, *transport_split, *rec_split, *param_split, *rand_param_split])[1:]
			# rand_param_split2 (300, 1, 64, 64, 3)

			if obs_type == 'flat':	
				cont_var_filter = np.tile(np.asarray([e['dist'] == 'cont' for e in batch['observed']['properties'][obs_type]]), 4)
				not_cont_var_filter = np.tile(np.asarray([e['dist'] != 'cont' for e in batch['observed']['properties'][obs_type]]), 4)
				if sum(not_cont_var_filter) > 0: helper.visualize_flat(samples_params_np[not_cont_var_filter], save_dir = save_dir, postfix = postfix+'_'+obs_type)
				if sum(cont_var_filter) > 0: helper.visualize_vectors(samples_params_np[cont_var_filter], save_dir = save_dir, postfix = postfix+'_'+obs_type)

			if obs_type == 'image':
				samples_params_np = np.array([np.array([]), *sample_split, *transport_split, *rec_split, *param_split, *rand_param_split])[1:]
				samples_params_np_interleaved = helper.interleave_data(samples_params_np)
				helper.visualize_images2(samples_params_np_interleaved, block_size=[sample_split[0].shape[0], len(samples_params_np)], save_dir=save_dir+'normal/', postfix=postfix+'_'+obs_type+'_normal')
				helper.visualize_images2(rand_param_split2[:int(np.sqrt(rand_param_split2.shape[0]))**2, ...], block_size=[int(np.sqrt(rand_param_split2.shape[0])), int(np.sqrt(rand_param_split2.shape[0]))], save_dir=save_dir+'normal_sample_only/', postfix=postfix+'_'+obs_type+'_normal_sample_only')
Exemple #2
0
def visualizeProductDistribution(sess, input_dict, batch, obs_dist, sample_obs_dist, save_dir = '.', postfix = ''):
	
	sample = batch['observed']['data']
	sample_properties = batch['observed']['properties']
	for obs_type in ['flat', 'image']:
		if sample[obs_type] is not None:
			
			sample_split = helper.split_tensor_np(sample[obs_type], -1, [e['size'][-1] for e in obs_dist.sample_properties[obs_type]])
			if 'param_split_tf' not in input_dict:
				param_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(obs_dist.dist_list[obs_type])]			
				input_dict['param_split_tf'] = param_split_tf
			if 'rand_param_split_tf' not in input_dict:
				rand_param_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(sample_obs_dist.dist_list[obs_type])]
				input_dict['rand_param_split_tf'] = rand_param_split_tf

			pdb.set_trace()
			param_split_tf = input_dict['param_split_tf']
			rand_param_split_tf = input_dict['rand_param_split_tf']
			
			param_split = sess.run(param_split_tf, feed_dict = input_dict)
			rand_param_split = sess.run(rand_param_split_tf, feed_dict = input_dict)
			samples_params_np = np.array([np.array([]), *sample_split, *param_split, *rand_param_split])[1:]

			if obs_type == 'flat':	
				cont_var_filter = np.tile(np.asarray([e['dist'] == 'cont' for e in batch['observed']['properties'][obs_type]]), 3)
				not_cont_var_filter = np.tile(np.asarray([e['dist'] != 'cont' for e in batch['observed']['properties'][obs_type]]), 3)
				if sum(not_cont_var_filter) > 0: helper.visualize_flat(samples_params_np[not_cont_var_filter], save_dir = save_dir, postfix = postfix+'_'+obs_type)
				if sum(cont_var_filter) > 0: helper.visualize_vectors(samples_params_np[cont_var_filter], save_dir = save_dir, postfix = postfix+'_'+obs_type)

			if obs_type == 'image':
				samples_params_np_interleaved = helper.interleave_data(samples_params_np)
				helper.visualize_images(samples_params_np_interleaved, save_dir = save_dir, postfix = postfix+'_'+obs_type)
Exemple #3
0
def visualizeProductDistribution4(sess, model, input_dict, batch, real_dist, transport_dist, reg_target_dist, rec_dist, obs_dist, sample_obs_dist, real_data = None, save_dir = '.', postfix = '', postfix2 = None, b_zero_one_range=True):
	sample = batch['observed']['data']
	sample_properties = batch['observed']['properties']
	for obs_type in ['flat', 'image']:
		if sample[obs_type] is not None:

			sample_split = helper.split_tensor_np(sample[obs_type], -1, [e['size'][-1] for e in obs_dist.sample_properties[obs_type]])

			if not hasattr(model, 'real_split_tf'): model.real_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(real_dist.dist_list[obs_type])]			
			if not hasattr(model, 'transport_split_tf'): model.transport_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(transport_dist.dist_list[obs_type])]			
			if not hasattr(model, 'reg_target_split_tf'): model.reg_target_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(reg_target_dist.dist_list[obs_type])]			
			if not hasattr(model, 'rec_split_tf'): model.rec_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(rec_dist.dist_list[obs_type])]			
			if not hasattr(model, 'param_split_tf'): model.param_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(obs_dist.dist_list[obs_type])]			
			if not hasattr(model, 'rand_param_split_tf'): model.rand_param_split_tf = [tf.reshape(e.get_interpretable_params()[0], list(sample_split[i].shape)) for i, e in enumerate(sample_obs_dist.dist_list[obs_type])]
			
			real_split, transport_split, reg_target_split, rec_split, param_split, rand_param_split = sess.run([model.real_split_tf, model.transport_split_tf, model.reg_target_split_tf, model.rec_split_tf, model.param_split_tf, model.rand_param_split_tf], feed_dict = input_dict)
			rand_param_split2 = None
			while rand_param_split2 is None or rand_param_split2.shape[0]<400:
				if rand_param_split2 is None: rand_param_split2 = sess.run(model.rand_param_split_tf, feed_dict = input_dict)[0]
				else: rand_param_split2 = np.concatenate([rand_param_split2, sess.run(model.rand_param_split_tf, feed_dict = input_dict)[0]], axis=0)
			samples_params_np = np.array([np.array([]), *sample_split, *transport_split, *reg_target_split, *rec_split, *param_split, *rand_param_split])[1:]
			# rand_param_split2 (300, 1, 64, 64, 3)

			if obs_type == 'flat':	
				cont_var_filter = np.tile(np.asarray([e['dist'] == 'cont' for e in batch['observed']['properties'][obs_type]]), 4)
				not_cont_var_filter = np.tile(np.asarray([e['dist'] != 'cont' for e in batch['observed']['properties'][obs_type]]), 4)
				if sum(not_cont_var_filter) > 0: helper.visualize_flat(samples_params_np[not_cont_var_filter], save_dir = save_dir, postfix = postfix+'_'+obs_type)
				if sum(cont_var_filter) > 0: helper.visualize_vectors(samples_params_np[cont_var_filter], save_dir = save_dir, postfix = postfix+'_'+obs_type)

			if obs_type == 'image':
				if b_zero_one_range: 
					np.clip(transport_split[0], 0, 1, out=transport_split[0])
					np.clip(reg_target_split[0], 0, 1, out=reg_target_split[0])
					np.clip(rec_split[0], 0, 1, out=rec_split[0])
					np.clip(param_split[0], 0, 1, out=param_split[0])
					np.clip(rand_param_split[0], 0, 1, out=rand_param_split[0])
					np.clip(rand_param_split2, 0, 1, out=rand_param_split2)

				samples_params_np = np.array([np.array([]), *real_split, *transport_split, *reg_target_split, *rec_split, *param_split, *rand_param_split])[1:]
				samples_params_np_interleaved = helper.interleave_data(samples_params_np)
				helper.visualize_images2(samples_params_np_interleaved, block_size=[sample_split[0].shape[0], len(samples_params_np)], save_dir=save_dir+'_normal/', postfix='normal_'+postfix, postfix2='normal_'+postfix2)
				helper.visualize_images2(rand_param_split2[:int(np.sqrt(rand_param_split2.shape[0]))**2, ...], block_size=[int(np.sqrt(rand_param_split2.shape[0])), int(np.sqrt(rand_param_split2.shape[0]))], save_dir=save_dir+'_sample_only/', postfix='sample_only_'+postfix, postfix2='sample_only_'+postfix2)
				
				if real_data is not None and (real_data.shape == rand_param_split2[:int(np.sqrt(rand_param_split2.shape[0]))**2, ...].shape): 
					helper.visualize_images2(np.concatenate([real_data, rand_param_split2[:int(np.sqrt(rand_param_split2.shape[0]))**2, ...]], axis=0), block_size=[int(np.sqrt(rand_param_split2.shape[0])), 2*int(np.sqrt(rand_param_split2.shape[0]))], save_dir=save_dir+'_sample_and_real/', postfix='sample_and_real_'+postfix, postfix2='sample_and_real_'+postfix2)