Exemple #1
0
def transit_eta(tables, static_feed, trip_update_feed, alert_feed, vehicle_position_feed, arg_agency_id, trip2pattern):
    columns = ['agency_id', 'RecordedDate', 'RecordedTime', 'veh_id', 'veh_lat', 'veh_lon',
               'veh_speed', 'veh_location_time', 'route_short_name', 'route_dir', 'day', 'run',
               'pattern_id', 'stop_id', 'seq', 'ETA']

    try:
       login = {'host':"localhost", 'user':SQL_USER,
                         'passwd':SQL_PWD, 'db': "PATHTransit"}
       run_pattern_df = helper.sql2df('RunPattern', login)
    except Exception as e:
        print e
    tables['TransitETA'] = pd.DataFrame()
    for entity in trip_update_feed.entity:
        new_row = {}
        new_row['agency_id'] = arg_agency_id
        new_row['RecordedDate'] = str(datetime.datetime.now().strftime('%Y-%m-%d'))
        new_row['RecordedTime'] = str(datetime.datetime.now().strftime('%H:%M:%S'))
        new_row['veh_id'] = entity.id
        new_row['veh_lat'] = entity.vehicle.position.latitude
        new_row['veh_lon'] = entity.vehicle.position.longitude
        new_row['veh_speed'] = entity.vehicle.position.speed

        #VTA and BART are in Bay area so time is the same
        new_row['veh_location_time'] =  str(datetime.datetime.now().strftime('%H:%M:%S'))
        # new_row['route_short_name'] = runPattern_entry['route_short_name']
        # new_row['day'] = runPattern_entry['day']
        # new_row['run'] = runPattern_entry['run']
        # new_row['pattern_id'] = runPattern_entry['pattern_id']
        # new_row['route_dir'] = runPattern_entry['route_dir']
        new_row['stop_id'] = entity.vehicle.stop_id
        new_row['seq'] = entity.vehicle.current_stop_sequence
        tables["TransitETA"] = tables["TransitETA"].append(pd.Series(new_row), ignore_index=True)
    helper.write_table(tables, "TransitETA")
    print "SUCCESS with TransitETA"
def transit_eta(tables, static_feed, trip_update_feed, alert_feed,
                vehicle_position_feed, agency_id, trip2pattern):
    columns = [
        'agency_id', 'RecordedDate', 'RecordedTime', 'veh_id', 'veh_lat',
        'veh_lon', 'veh_speed', 'veh_location_time', 'route_short_name',
        'route_dir', 'day', 'run', 'pattern_id', 'stop_id', 'seq', 'ETA'
    ]

    try:
        login = {
            'host': "localhost",
            'user': "******",
            'passwd': "root",
            'db': "TrafficTransit"
        }
        run_pattern_df = helper.sql2df('RunPattern', login)
    except Exception as e:
        print e
    tables['TransitETA'] = pd.DataFrame()
    for entity in trip_update_feed.entity:
        new_row = {}
        new_row['agency_id'] = agency_id
        new_row['RecordedDate'] = str(
            datetime.datetime.now().strftime('%Y-%m-%d'))
        new_row['RecordedTime'] = str(
            datetime.datetime.now().strftime('%H:%M:%S'))
        new_row['veh_id'] = entity.id
        new_row['veh_lat'] = entity.vehicle.position.latitude
        new_row['veh_lon'] = entity.vehicle.position.longitude
        new_row['veh_speed'] = entity.vehicle.position.speed

        #VTA and BART are in Bay area so time is the same
        new_row['veh_location_time'] = str(
            datetime.datetime.now().strftime('%H:%M:%S'))
        # new_row['route_short_name'] = runPattern_entry['route_short_name']
        # new_row['day'] = runPattern_entry['day']
        # new_row['run'] = runPattern_entry['run']
        # new_row['pattern_id'] = runPattern_entry['pattern_id']
        # new_row['route_dir'] = runPattern_entry['route_dir']
        new_row['stop_id'] = entity.vehicle.stop_id
        new_row['seq'] = entity.vehicle.current_stop_sequence
        tables["TransitETA"] = tables["TransitETA"].append(pd.Series(new_row),
                                                           ignore_index=True)
    helper.write_table(tables, "TransitETA")
    print "SUCCESS with TransitETA"
Exemple #3
0
def transfers(tables, static_feed, arg_agency_id):
    tables["Transfers"] = pd.DataFrame()
    columns = ['from_agency_id', 'from_id', 'to_agency_id', 'to_id', 'transfer_type',
               'min_transfer_time', 'transfer_dist']
    max_distance = 0.5  #this is in miles
    #initiate googlemaps for finding minimum transfer time and transfer distance
    gmaps = googlemaps.Client(key='AIzaSyB_yzsaBUOOo3ukoeDvtjg5Q32IGSkBUvU')

    #loop through unique patterns in route_stop_seq
    try:
        #What is shapes_df also had the trips it is a part of?
        #load the Route_Stop_Seq for miscellaneous things
        login = {'host':"localhost", 'user':SQL_USER,
                         'passwd':SQL_PWD, 'db': "PATHTransit"}
        route_stop_seq_df = helper.sql2df('Route_stop_seq', login)
    except Exception as e:
        print os.getcwd()
        print e
    counter = 0
    using_google_maps = False

    #get the unique list of patterns
    unique_patterns = route_stop_seq_df['pattern_id'].unique()


    #iterate through the unique list of patterns
    for from_pattern in unique_patterns:  #get one side of the pattern

        #get stop id's associated with the from_pattern
        from_pattern_stops = route_stop_seq_df[route_stop_seq_df['pattern_id'] == from_pattern]['stop_id']

        for to_pattern in unique_patterns: #get the other pattern
            if from_pattern != to_pattern:

                #get stop_id's assoicated with the to_pattern
                to_pattern_stops = route_stop_seq_df[route_stop_seq_df['pattern_id'] == to_pattern]['stop_id']

                #now you have two lists of stops from different patterns, iterate through this list of stops
                for from_pattern_stop in from_pattern_stops:
                    for to_pattern_stop in to_pattern_stops:
                        if arg_agency_id == 11: #if it's TriDelta, coerce from_pattern_stop to Int
                            from_stop_coord = static_feed['stops'][static_feed['stops']['stop_id']
                                                                           == int(from_pattern_stop)].iloc[0]
                            to_stop_coord = static_feed['stops'][static_feed['stops']['stop_id']
                                                                           == int(to_pattern_stop)].iloc[0]
                        elif arg_agency_id == 8: #if it's bart, then leave it as a string
                            from_stop_coord = static_feed['stops'][static_feed['stops']['stop_id']
                                                                           == from_pattern_stop].iloc[0]
                            to_stop_coord = static_feed['stops'][static_feed['stops']['stop_id']
                                                                           == to_pattern_stop].iloc[0]
                        else:
                            from_stop_coord = static_feed['stops'][static_feed['stops']['stop_id']
                                                                           == from_pattern_stop].iloc[0]
                            to_stop_coord = static_feed['stops'][static_feed['stops']['stop_id']
                                                                           == to_pattern_stop].iloc[0]
                        if using_google_maps:
                            distance_time_result = helper.google_walking_distance_time(from_stop_coord['stop_lat'], from_stop_coord['stop_lon'],
                                                                                       to_stop_coord['stop_lat'], to_stop_coord['stop_lon'])
                        else:
                            distance_time_result = {}
                            distance_time_result['distance'] = helper.coordToMiles(from_stop_coord['stop_lat'], from_stop_coord['stop_lon'],
                                                                                       to_stop_coord['stop_lat'], to_stop_coord['stop_lon'])
                            distance_time_result['duration'] = "Time Estimation N/A"

                        if distance_time_result['distance'] < max_distance: #if the distance is within boundaries add a new row
                            print distance_time_result
                            counter += 1

                            print "counter: " + str(counter)
                            new_row = {}
                            new_row['from_agency_id'] = arg_agency_id
                            new_row['from_id'] = from_pattern_stop
                            new_row['to_agency_id'] = 1
                            new_row['to_id'] = to_pattern_stop
                            new_row['tranfer_type'] = 0
                            new_row['min_transfer_time'] = distance_time_result['duration']
                            new_row['transfer_dist'] = distance_time_result['distance']
                            tables["Transfers"] = tables["Transfers"].append(pd.Series(new_row), ignore_index=True)

    helper.write_table(tables, "Transfers")
    print "SUCCESS with Transfers"
Exemple #4
0
def route_point_seq(tables, static_feed, arg_agency_id, trip2pattern):

    try:
        #What is shapes_df also had the trips it is a part of?
        #load the Route_Stop_Seq for miscellaneous things
        login = {'host':"localhost", 'user':SQL_USER,
                         'passwd':SQL_PWD, 'db': "PATHTransit"}
        route_stop_seq_df = helper.sql2df('Route_stop_seq', login)
        big_points_df = helper.sql2df('Big_Points', login)
        points_df = helper.sql2df('Points', login)
    except Exception as e:
        print os.getcwd()
        print e

    counter = 0

    tables['Route_Point_Seq2'] = pd.DataFrame()
    columns = ['agency_id', 'route_short_name', 'route_dir', 'pattern_id', 'shape_id',
               'point_id', 'seq', 'length', 'heading', 'dist', 'version']

    #find a list of unique trips route_stop_seq_df
    unique_trips = route_stop_seq_df['trip_id'].unique()

    #loop through the route_stop_seq_df
    for current_trip_id in unique_trips:

        #from route_stop_stop_seq
        print "current trip id: " + str(current_trip_id)
        route_info_specific_to_trip = route_stop_seq_df[route_stop_seq_df['trip_id'] == current_trip_id].iloc[0]

        #use the current trip_id to find the shape_id associatd with the trip
        current_shape_id = static_feed['trips'][static_feed['trips']['trip_id'] == current_trip_id].iloc[0]['shape_id']
        print "Current_shape_id: " + str(current_shape_id)

        #with the shape_id, you can find a list of way points from shapes.txt
        waypoints_specific_to_shape_id = static_feed['shapes'][static_feed['shapes']['shape_id'] == current_shape_id]
        print "WayPoints: "
        print waypoints_specific_to_shape_id
        distanceSinceStart = 0 #keep track of distance since start of the trip
        lastPoint = None
        for a, row in waypoints_specific_to_shape_id.iterrows():
            counter += 1
            print "counter: "+ str(counter)
            new_row = {}

            #info from route_stop_seq
            new_row['route_short_name'] = route_info_specific_to_trip['route_short_name']
            new_row['route_dir'] = route_info_specific_to_trip['trip_id']
            new_row['pattern_id'] = route_info_specific_to_trip['pattern_id']

            #info from general
            new_row['trip_id'] = current_trip_id
            new_row['agency_id'] = arg_agency_id
            new_row['shape_id'] = current_shape_id

            #info from current waypoints loop
            new_row['shape_pt_sequence'] = row['shape_pt_sequence']
            #geting the point_id is incredibly hard because you have to match the point_id with the
            #current_lon, current_lat with is very technically dificult
            #how to calculate the length
            currentLon = row['shape_pt_lon']
            currentLat = row['shape_pt_lat']

            if lastPoint != None:
                new_row['length'] = helper.coordToMiles(currentLat, currentLon, lastPoint['current_lat'], lastPoint['current_lon'])
                distanceSinceStart += new_row['length']
                #add the length for the cumumulative distance
                new_row['dist'] = distanceSinceStart

                new_row['heading'] = helper.calculate_heading(currentLat, currentLon, lastPoint['current_lat'],lastPoint['current_lon'])
                lastPoint = {'current_lat': currentLat, 'current_lon': currentLon}
            else: #the case where we just start the way point
                new_row['length']  = 0 # seq i - seq i distance is 0
                new_row['dist'] = 0
                lastPoint = {'current_lat': currentLat, 'current_lon': currentLon}
                new_row['heading'] = "N/A" #the first point doesn't have any heading

            #calculate the point_id based on pt_lon, pt_lon
            big_constant = pow(10, 8)
            currentBigLon = int(currentLon * big_constant)
            currentBigLat = int(currentLat * big_constant)
            point_id = big_points_df[(big_points_df['point_lat'] == currentBigLat) &
                                     (big_points_df['point_lon'] == currentBigLon)].iloc[0]['point_id']
            new_row['point_id'] = point_id
            tables['Route_Point_Seq2'] = tables['Route_Point_Seq2'].append(pd.Series(new_row), ignore_index=True)
    print tables['Route_Point_Seq2']
    helper.write_table(tables, "Route_Point_Seq2")
    print "SUCCESS with Route Point Seq 2"
Exemple #5
0
def schedules(tables, static_feed, arg_agency_id, trip2pattern):
    try:
        login = {'host': "localhost", 'user': SQL_USER,
                 'passwd': SQL_PWD, 'db': "PATHTransit"}
        run_pattern_df = helper.sql2df('RunPattern', login)
        agency_name = static_feed['agency'].iloc[0]['agency_name']
        trip2pattern = helper.csv2df("Trip2Pattern.csv") #load the trip2pattern csv
        route_stop_seq_df = helper.sql2df('Route_stop_seq', login)


    except Exception as e:
        print e
    columns = ['agency_id', 'route_short_name', 'start_date', 'end_date', 'day',
               'route_dir', 'run', 'pattern_id', 'seq', 'stop_id',
               'is_time_point', 'pickup_type', 'drop_off_type',
               'arrival_time', 'departure_time', 'stop_headsign', 'trip_id']

    tables["Schedules"] = pd.DataFrame()

    pattern_id_memoization = {} #to save calculations and memory
    counter = 0
    #use the unique tripid's to find the the patternid's specific to that trip
    for a, row in static_feed['stop_times'].iterrows():
        print counter
        counter += 1

        #find the pattern_id(What is the point of pattern id? we already have the stops.)
        pattern_id = trip2pattern[trip2pattern['trip_id'] == row['trip_id']]['pattern_id']
        new_row = {}

        #agency_id basic info
        new_row['agency_id'] = arg_agency_id


        #information from pattern_id
        current_trip_id = row['trip_id']

        if current_trip_id in pattern_id_memoization.keys():
            new_row['pattern_id'] = pattern_id_memoization[current_trip_id]
            print current_trip_id
        else: #access trip2pattern.csv to match the trip_id with the pattern
            pattern_id = trip2pattern[trip2pattern['trip_id'] == current_trip_id].iloc[0]['pattern_id']
            pattern_id_memoization[current_trip_id] = pattern_id
            new_row['pattern_id'] = pattern_id_memoization[current_trip_id]

        print "current trip id: " + str(current_trip_id)
        # print route_stop_seq_df
        #get information by matching with route_stop_seq matching by trip_id
        route_stop_seq_stop_time_specific = route_stop_seq_df[route_stop_seq_df['trip_id'] == current_trip_id]
        if not route_stop_seq_stop_time_specific.empty:
            route_stop_seq_stop_time_specific = route_stop_seq_stop_time_specific.iloc[0]
            new_row['route_short_name'] = route_stop_seq_stop_time_specific['route_short_name']
            new_row['route_dir'] = route_stop_seq_stop_time_specific['route_dir']


        #get information using run pattern by matching with trip_id
        run_pattern_stop_time_specific = run_pattern_df[run_pattern_df['trip_id'] == current_trip_id]
        if not run_pattern_stop_time_specific.empty:
            run_pattern_stop_time_specific = run_pattern_stop_time_specific.iloc[0]
            new_row['start_date'] = run_pattern_stop_time_specific['start_date']
            new_row['end_date'] = run_pattern_stop_time_specific['end_date']
            new_row['day'] = run_pattern_stop_time_specific['day']
            new_row['run'] = run_pattern_stop_time_specific['run']


        #all information in stop_times.txt
        new_row['seq'] = row['stop_sequence']
        new_row['stop_id'] = row['stop_id']
        #time point is optional
        new_row['is_time_point'] = helper.optional_field(a, 'time_point', static_feed['stop_times'])
        # new_row['is_time_point'] = row['timepoint']
        new_row['pickup_type'] = helper.optional_field(a, 'pickup_type', static_feed['stop_times'])
        # new_row['pickup_type'] = row['pickup_type']
        # new_row['drop_off_type'] = row['drop_off_type']
        new_row['pickup_type'] = helper.optional_field(a, 'drop_off_type', static_feed['stop_times'])
        new_row['arrival_time'] = row['arrival_time']
        new_row['departure_time'] = row['departure_time']
        # new_row['stop_headsign'] = row['stop_headsign']
        new_row['stop_headsign'] = helper.optional_field(a, 'stop_headsign', static_feed['stop_times'])
        new_row['trip_id'] = row['trip_id']
        tables["Schedules"] = tables["Schedules"].append(pd.Series(new_row), ignore_index=True)

    helper.write_table(tables, "Schedules")
    print "Sucess with Schedules"
def transfers(tables, static_feed, trip_update_feed, alert_feed,
              vehicle_position_feed, agency_id, trip2pattern):
    tables["Transfers"] = pd.DataFrame()
    columns = [
        'from_agency_id', 'from_id', 'to_agency_id', 'to_id', 'transfer_type',
        'min_transfer_time', 'transfer_dist'
    ]
    max_distance = 3  #this is in miles
    #initiate googlemaps for finding minimum transfer time and transfer distance
    gmaps = googlemaps.Client(key='AIzaSyB_yzsaBUOOo3ukoeDvtjg5Q32IGSkBUvU')

    #loop through unique patterns in route_stop_seq
    try:
        #What is shapes_df also had the trips it is a part of?
        #load the Route_Stop_Seq for miscellaneous things
        login = {
            'host': "localhost",
            'user': "******",
            'passwd': "root",
            'db': "TrafficTransit"
        }
        route_stop_seq_df = helper.sql2df('Route_stop_seq', login)
    except Exception as e:
        print os.getcwd()
        print e
    counter = 0
    using_google_maps = False

    #get the unique list of patterns
    unique_patterns = route_stop_seq_df['pattern_id'].unique()

    #iterate through the unique list of patterns
    for from_pattern in unique_patterns:  #get one side of the pattern

        #get stop id's associated with the from_pattern
        from_pattern_stops = route_stop_seq_df[route_stop_seq_df['pattern_id']
                                               == from_pattern]['stop_id']

        for to_pattern in unique_patterns:  #get the other pattern
            if from_pattern != to_pattern:

                #get stop_id's assoicated with the to_pattern
                to_pattern_stops = route_stop_seq_df[
                    route_stop_seq_df['pattern_id'] == to_pattern]['stop_id']

                #now you have two lists of stops from different patterns, iterate through this list of stops
                for from_pattern_stop in from_pattern_stops:
                    for to_pattern_stop in to_pattern_stops:
                        if agency_id == 11:  #if it's TriDelta, coerce from_pattern_stop to Int
                            from_stop_coord = static_feed['stops'][
                                static_feed['stops']['stop_id'] == int(
                                    from_pattern_stop)].iloc[0]
                            to_stop_coord = static_feed['stops'][
                                static_feed['stops']['stop_id'] == int(
                                    to_pattern_stop)].iloc[0]
                        elif agency_id == 8:  #if it's bart, then leave it as a string
                            from_stop_coord = static_feed['stops'][
                                static_feed['stops']['stop_id'] ==
                                from_pattern_stop].iloc[0]
                            to_stop_coord = static_feed['stops'][
                                static_feed['stops']['stop_id'] ==
                                to_pattern_stop].iloc[0]
                        else:
                            from_stop_coord = static_feed['stops'][
                                static_feed['stops']['stop_id'] ==
                                from_pattern_stop].iloc[0]
                            to_stop_coord = static_feed['stops'][
                                static_feed['stops']['stop_id'] ==
                                to_pattern_stop].iloc[0]
                        if using_google_maps:
                            distance_time_result = helper.google_walking_distance_time(
                                from_stop_coord['stop_lat'],
                                from_stop_coord['stop_lon'],
                                to_stop_coord['stop_lat'],
                                to_stop_coord['stop_lon'])
                        else:
                            distance_time_result = {}
                            distance_time_result[
                                'distance'] = helper.coordToMiles(
                                    from_stop_coord['stop_lat'],
                                    from_stop_coord['stop_lon'],
                                    to_stop_coord['stop_lat'],
                                    to_stop_coord['stop_lon'])
                            distance_time_result[
                                'duration'] = "Time Estimation N/A"

                        if distance_time_result[
                                'distance'] < max_distance:  #if the distance is within boundaries add a new row
                            print distance_time_result
                            counter += 1

                            print "counter: " + str(counter)
                            new_row = {}
                            new_row['from_agency_id'] = agency_id
                            new_row['from_id'] = from_pattern_stop
                            new_row['to_agency_id'] = 1
                            new_row['to_id'] = to_pattern_stop
                            new_row['tranfer_type'] = 0
                            new_row[
                                'min_transfer_time'] = distance_time_result[
                                    'duration']
                            new_row['transfer_dist'] = distance_time_result[
                                'distance']
                            tables["Transfers"] = tables["Transfers"].append(
                                pd.Series(new_row), ignore_index=True)

    helper.write_table(tables, "Transfers")
    print "SUCCESS with Transfers"
def route_point_seq(tables, static_feed, trip_update_feed, alert_feed,
                    vehicle_position_feed, agency_id, trip2pattern):

    try:
        #What is shapes_df also had the trips it is a part of?
        #load the Route_Stop_Seq for miscellaneous things
        login = {
            'host': "localhost",
            'user': "******",
            'passwd': "root",
            'db': "TrafficTransit"
        }
        route_stop_seq_df = helper.sql2df('Route_stop_seq', login)
        big_points_df = helper.sql2df('Big_Points', login)
        points_df = helper.sql2df('Points', login)
    except Exception as e:
        print os.getcwd()
        print e

    counter = 0

    tables['Route_Point_Seq2'] = pd.DataFrame()
    columns = [
        'agency_id', 'route_short_name', 'route_dir', 'pattern_id', 'shape_id',
        'point_id', 'seq', 'length', 'heading', 'dist', 'version'
    ]

    #find a list of unique trips route_stop_seq_df
    unique_trips = route_stop_seq_df['trip_id'].unique()

    #loop through the route_stop_seq_df
    for current_trip_id in unique_trips:

        #from route_stop_stop_seq
        print "current trip id: " + str(current_trip_id)
        route_info_specific_to_trip = route_stop_seq_df[
            route_stop_seq_df['trip_id'] == current_trip_id].iloc[0]

        #use the current trip_id to find the shape_id associatd with the trip
        current_shape_id = static_feed['trips'][
            static_feed['trips']['trip_id'] ==
            current_trip_id].iloc[0]['shape_id']
        print "Current_shape_id: " + str(current_shape_id)

        #with the shape_id, you can find a list of way points from shapes.txt
        waypoints_specific_to_shape_id = static_feed['shapes'][
            static_feed['shapes']['shape_id'] == current_shape_id]
        print "WayPoints: "
        print waypoints_specific_to_shape_id
        distanceSinceStart = 0  #keep track of distance since start of the trip
        lastPoint = None
        for a, row in waypoints_specific_to_shape_id.iterrows():
            counter += 1
            print "counter: " + str(counter)
            new_row = {}

            #info from route_stop_seq
            new_row['route_short_name'] = route_info_specific_to_trip[
                'route_short_name']
            new_row['route_dir'] = route_info_specific_to_trip['trip_id']
            new_row['pattern_id'] = route_info_specific_to_trip['pattern_id']

            #info from general
            new_row['trip_id'] = current_trip_id
            new_row['agency_id'] = agency_id
            new_row['shape_id'] = current_shape_id

            #info from current waypoints loop
            new_row['shape_pt_sequence'] = row['shape_pt_sequence']
            #geting the point_id is incredibly hard because you have to match the point_id with the
            #current_lon, current_lat with is very technically dificult
            #how to calculate the length
            currentLon = row['shape_pt_lon']
            currentLat = row['shape_pt_lat']

            if lastPoint != None:
                new_row['length'] = helper.coordToMiles(
                    currentLat, currentLon, lastPoint['current_lat'],
                    lastPoint['current_lon'])
                distanceSinceStart += new_row['length']
                #add the length for the cumumulative distance
                new_row['dist'] = distanceSinceStart

                new_row['heading'] = helper.calculate_heading(
                    currentLat, currentLon, lastPoint['current_lat'],
                    lastPoint['current_lon'])
                lastPoint = {
                    'current_lat': currentLat,
                    'current_lon': currentLon
                }
            else:  #the case where we just start the way point
                new_row['length'] = 0  # seq i - seq i distance is 0
                new_row['dist'] = 0
                lastPoint = {
                    'current_lat': currentLat,
                    'current_lon': currentLon
                }
                new_row[
                    'heading'] = "N/A"  #the first point doesn't have any heading

            #calculate the point_id based on pt_lon, pt_lon
            big_constant = pow(10, 8)
            currentBigLon = int(currentLon * big_constant)
            currentBigLat = int(currentLat * big_constant)
            point_id = big_points_df[
                (big_points_df['point_lat'] == currentBigLat)
                & (big_points_df['point_lon'] == currentBigLon
                   )].iloc[0]['point_id']
            new_row['point_id'] = point_id
            tables['Route_Point_Seq2'] = tables['Route_Point_Seq2'].append(
                pd.Series(new_row), ignore_index=True)
    print tables['Route_Point_Seq2']
    helper.write_table(tables, "Route_Point_Seq2")
    print "SUCCESS with Route Point Seq 2"
def schedules(tables, static_feed, trip_update_feed, alert_feed,
              vehicle_position_feed, agency_id, trip2pattern):
    try:
        login = {
            'host': "localhost",
            'user': "******",
            'passwd': "root",
            'db': "TrafficTransit"
        }
        run_pattern_df = helper.sql2df('RunPattern', login)
        agency_name = static_feed['agency'].iloc[0]['agency_name']
        trip2pattern = helper.csv2df(
            "Trip2Pattern.csv")  #load the trip2pattern csv
        route_stop_seq_df = helper.sql2df('route_stop_seq', login)

    except Exception as e:
        print e
    columns = [
        'agency_id', 'route_short_name', 'start_date', 'end_date', 'day',
        'route_dir', 'run', 'pattern_id', 'seq', 'stop_id', 'is_time_point',
        'pickup_type', 'drop_off_type', 'arrival_time', 'departure_time',
        'stop_headsign', 'trip_id'
    ]

    tables["Schedules"] = pd.DataFrame()

    pattern_id_memoization = {}  #to save calculations and memory
    counter = 0
    #use the unique tripid's to find the the patternid's specific to that trip
    for a, row in static_feed['stop_times'].iterrows():
        print counter
        counter += 1

        #find the pattern_id(What is the point of pattern id? we already have the stops.)
        pattern_id = trip2pattern[trip2pattern['trip_id'] ==
                                  row['trip_id']]['pattern_id']
        new_row = {}

        #agency_id basic info
        new_row['agency_id'] = agency_id

        #information from pattern_id
        current_trip_id = row['trip_id']

        if current_trip_id in pattern_id_memoization.keys():
            new_row['pattern_id'] = pattern_id_memoization[current_trip_id]
            print current_trip_id
        else:  #access trip2pattern.csv to match the trip_id with the pattern
            pattern_id = trip2pattern[trip2pattern['trip_id'] ==
                                      current_trip_id].iloc[0]['pattern_id']
            pattern_id_memoization[current_trip_id] = pattern_id
            new_row['pattern_id'] = pattern_id_memoization[current_trip_id]

        print "current trip id: " + str(current_trip_id)
        # print route_stop_seq_df
        #get information by matching with route_stop_seq matching by trip_id
        route_stop_seq_stop_time_specific = route_stop_seq_df[
            route_stop_seq_df['trip_id'] == current_trip_id]
        if not route_stop_seq_stop_time_specific.empty:
            route_stop_seq_stop_time_specific = route_stop_seq_stop_time_specific.iloc[
                0]
            new_row['route_short_name'] = route_stop_seq_stop_time_specific[
                'route_short_name']
            new_row['route_dir'] = route_stop_seq_stop_time_specific[
                'route_dir']

        #get information using run pattern by matching with trip_id
        run_pattern_stop_time_specific = run_pattern_df[
            run_pattern_df['trip_id'] == current_trip_id]
        if not run_pattern_stop_time_specific.empty:
            run_pattern_stop_time_specific = run_pattern_stop_time_specific.iloc[
                0]
            new_row['start_date'] = run_pattern_stop_time_specific[
                'start_date']
            new_row['end_date'] = run_pattern_stop_time_specific['end_date']
            new_row['day'] = run_pattern_stop_time_specific['day']
            new_row['run'] = run_pattern_stop_time_specific['run']

        #all information in stop_times.txt
        new_row['seq'] = row['stop_sequence']
        new_row['stop_id'] = row['stop_id']
        #time point is optional
        new_row['is_time_point'] = helper.optional_field(
            a, 'time_point', static_feed['stop_times'])
        # new_row['is_time_point'] = row['timepoint']
        new_row['pickup_type'] = helper.optional_field(
            a, 'pickup_type', static_feed['stop_times'])
        # new_row['pickup_type'] = row['pickup_type']
        # new_row['drop_off_type'] = row['drop_off_type']
        new_row['pickup_type'] = helper.optional_field(
            a, 'drop_off_type', static_feed['stop_times'])
        new_row['arrival_time'] = row['arrival_time']
        new_row['departure_time'] = row['departure_time']
        # new_row['stop_headsign'] = row['stop_headsign']
        new_row['stop_headsign'] = helper.optional_field(
            a, 'stop_headsign', static_feed['stop_times'])
        new_row['trip_id'] = row['trip_id']
        tables["Schedules"] = tables["Schedules"].append(pd.Series(new_row),
                                                         ignore_index=True)

    helper.write_table(tables, "Schedules")
    print "Sucess with Schedules"