def apply(model, model_path, images, ground_truth=None): left = cv2.imread(images[0]) h, w = left.shape[:2] newh = (h // 64) * 64 neww = (w // 64) * 64 aug = imgaug.CenterCrop((newh, neww)) left = aug.augment(left) predict_func = OfflinePredictor( PredictConfig(model=model(height=newh, width=neww), session_init=get_model_loader(model_path), input_names=['left', 'right'], output_names=['prediction'])) for right in images[1:]: right = aug.augment(cv2.imread(right)) left_input, right_input = [ x.astype('float32').transpose(2, 0, 1)[None, ...] for x in [left, right] ] output = predict_func(left_input, right_input)[0].transpose(0, 2, 3, 1) flow = Flow() img = flow.visualize(output[0]) patches = [left, right, img * 255.] if ground_truth is not None: patches.append(flow.visualize(Flow.read(ground_truth)) * 255.) img = viz.stack_patches(patches, 2, 2) cv2.imshow('flow output', img) cv2.imwrite('flow_prediction.png', img) cv2.waitKey(0) left = right
def get_data(self): for flow_path in self.flows: input_path = flow_path.replace( self.path_prefix, os.path.join( self.data_path, 'clean', )) frame_id = int(input_path[-8:-4]) input_a_path = '%s%04i.png' % (input_path[:-8], frame_id) input_b_path = '%s%04i.png' % (input_path[:-8], frame_id + 1) input_a = cv2.imread(input_a_path) input_b = cv2.imread(input_b_path) flow = Flow.read(flow_path) # most implementation just crop the center # which seems to be accepted practise h, w = input_a.shape[:2] h_ = (h // 64) * 64 w_ = (w // 64) * 64 h_start = (h - h_) // 2 w_start = (w - w_) // 2 # this is ugly h_end = -h_start if h_start > 0 else h w_end = -w_start if w_start > 0 else w input_a = input_a[h_start:h_end, w_start:w_end, :] input_b = input_b[h_start:h_end, w_start:w_end, :] flow = flow[h_start:h_end, w_start:w_end, :] yield [input_a, input_b, flow]
def apply(model_name, model_path, left, right, ground_truth=None): model = MODEL_MAP[model_name] left = cv2.imread(left).astype(np.float32).transpose(2, 0, 1)[None, ...] right = cv2.imread(right).astype(np.float32).transpose(2, 0, 1)[None, ...] predict_func = OfflinePredictor( PredictConfig(model=model(), session_init=get_model_loader(model_path), input_names=['left', 'right'], output_names=['prediction'])) output = predict_func(left, right)[0].transpose(0, 2, 3, 1) flow = Flow() img = flow.visualize(output[0]) if ground_truth is not None: img = np.concatenate( [img, flow.visualize(Flow.read(ground_truth))], axis=1) cv2.imshow('flow output', img) cv2.waitKey(0)
def __iter__(self): for flow_path in self.flows: input_path = flow_path.replace( self.path_prefix, os.path.join(self.data_path, 'clean')) frame_id = int(input_path[-8:-4]) input_a_path = '%s%04i.png' % (input_path[:-8], frame_id) input_b_path = '%s%04i.png' % (input_path[:-8], frame_id + 1) input_a = cv2.imread(input_a_path) input_b = cv2.imread(input_b_path) flow = Flow.read(flow_path) # most implementation just crop the center # which seems to be accepted practise h, w = input_a.shape[:2] newh = (h // 64) * 64 neww = (w // 64) * 64 aug = imgaug.CenterCrop((newh, neww)) input_a = aug.augment(input_a) input_b = aug.augment(input_b) flow = aug.augment(flow) yield [input_a, input_b, flow]