Exemple #1
0
def apply(model, model_path, images, ground_truth=None):
    left = cv2.imread(images[0])
    h, w = left.shape[:2]
    newh = (h // 64) * 64
    neww = (w // 64) * 64
    aug = imgaug.CenterCrop((newh, neww))
    left = aug.augment(left)

    predict_func = OfflinePredictor(
        PredictConfig(model=model(height=newh, width=neww),
                      session_init=get_model_loader(model_path),
                      input_names=['left', 'right'],
                      output_names=['prediction']))

    for right in images[1:]:
        right = aug.augment(cv2.imread(right))

        left_input, right_input = [
            x.astype('float32').transpose(2, 0, 1)[None, ...]
            for x in [left, right]
        ]
        output = predict_func(left_input, right_input)[0].transpose(0, 2, 3, 1)
        flow = Flow()

        img = flow.visualize(output[0])
        patches = [left, right, img * 255.]
        if ground_truth is not None:
            patches.append(flow.visualize(Flow.read(ground_truth)) * 255.)
        img = viz.stack_patches(patches, 2, 2)

        cv2.imshow('flow output', img)
        cv2.imwrite('flow_prediction.png', img)
        cv2.waitKey(0)

        left = right
Exemple #2
0
    def get_data(self):
        for flow_path in self.flows:
            input_path = flow_path.replace(
                self.path_prefix, os.path.join(
                    self.data_path,
                    'clean',
                ))
            frame_id = int(input_path[-8:-4])
            input_a_path = '%s%04i.png' % (input_path[:-8], frame_id)
            input_b_path = '%s%04i.png' % (input_path[:-8], frame_id + 1)

            input_a = cv2.imread(input_a_path)
            input_b = cv2.imread(input_b_path)
            flow = Flow.read(flow_path)

            # most implementation just crop the center
            # which seems to be accepted practise
            h, w = input_a.shape[:2]
            h_ = (h // 64) * 64
            w_ = (w // 64) * 64
            h_start = (h - h_) // 2
            w_start = (w - w_) // 2

            # this is ugly
            h_end = -h_start if h_start > 0 else h
            w_end = -w_start if w_start > 0 else w

            input_a = input_a[h_start:h_end, w_start:w_end, :]
            input_b = input_b[h_start:h_end, w_start:w_end, :]
            flow = flow[h_start:h_end, w_start:w_end, :]

            yield [input_a, input_b, flow]
Exemple #3
0
def apply(model_name, model_path, left, right, ground_truth=None):
    model = MODEL_MAP[model_name]
    left = cv2.imread(left).astype(np.float32).transpose(2, 0, 1)[None, ...]
    right = cv2.imread(right).astype(np.float32).transpose(2, 0, 1)[None, ...]

    predict_func = OfflinePredictor(
        PredictConfig(model=model(),
                      session_init=get_model_loader(model_path),
                      input_names=['left', 'right'],
                      output_names=['prediction']))

    output = predict_func(left, right)[0].transpose(0, 2, 3, 1)
    flow = Flow()

    img = flow.visualize(output[0])
    if ground_truth is not None:
        img = np.concatenate(
            [img, flow.visualize(Flow.read(ground_truth))], axis=1)

    cv2.imshow('flow output', img)
    cv2.waitKey(0)
Exemple #4
0
    def __iter__(self):
        for flow_path in self.flows:
            input_path = flow_path.replace(
                self.path_prefix, os.path.join(self.data_path, 'clean'))
            frame_id = int(input_path[-8:-4])
            input_a_path = '%s%04i.png' % (input_path[:-8], frame_id)
            input_b_path = '%s%04i.png' % (input_path[:-8], frame_id + 1)

            input_a = cv2.imread(input_a_path)
            input_b = cv2.imread(input_b_path)
            flow = Flow.read(flow_path)

            # most implementation just crop the center
            # which seems to be accepted practise
            h, w = input_a.shape[:2]
            newh = (h // 64) * 64
            neww = (w // 64) * 64
            aug = imgaug.CenterCrop((newh, neww))
            input_a = aug.augment(input_a)
            input_b = aug.augment(input_b)
            flow = aug.augment(flow)
            yield [input_a, input_b, flow]