def var_explained(data, modParams, whichInd=None, DoGmodel=1, rvcModel=None, whichSfs = None, ref_params=None, ref_rc_val=None, dataAreResps=False):
  ''' given a set of responses and model parameters, compute the variance explained by the model (DoGsach)
      --- whichInd is either the contrast index (if doing SF tuning)
                              or SF index (if doing RVCs)
  '''
  resp_dist = lambda x, y: np.sum(np.square(x-y))/np.maximum(len(x), len(y))
  var_expl = lambda m, r, rr: 100 * (1 - resp_dist(m, r)/resp_dist(r, rr));

  if dataAreResps:
    obs_mean = data; # we've directly passed in the means of interest
  else:
    respsSummary, stims, allResps = tabulateResponses(data); # Need to fit on f1 
    f1 = respsSummary[1];
    if rvcModel is None: # SF
      all_sfs = stims[1];
      obs_mean = f1['mean'][whichInd, :];
    else:
      all_cons = stims[0];
      obs_mean = f1['mean'][:, whichInd];

  if whichSfs is not None:
    all_sfs = whichSfs; # maybe we've passed in the Sfs to use...
    
  if rvcModel is None: # then we're doing vExp for SF tuning
    pred_mean = get_descrResp(modParams, all_sfs, DoGmodel, ref_rc_val=ref_rc_val);
  else: # then we've getting RVC responses!
    pred_mean = get_rvcResp(modParams, cons, rvcMod)

  obs_grand_mean = np.mean(obs_mean) * np.ones_like(obs_mean); # make sure it's the same shape as obs_mean
    
  return var_expl(pred_mean, obs_mean, obs_grand_mean);
                                                       curr_con],
                                               fmt='o',
                                               clip_on=False,
                                               color=dataClr)

    # now, let's also plot the baseline, if complex cell
    if baseline_resp > 0:  #is not None: # i.e. complex cell
        sfMixAx[plt_ind_row, plt_ind_col].axhline(baseline_resp,
                                                  color=dataClr,
                                                  linestyle='dashed')

    # plot descrFit
    prms_curr = descrParams[curr_disp, curr_con]
    descrResp = hf.get_descrResp(prms_curr,
                                 sfs_plot,
                                 descrMod,
                                 baseline=baseline_resp,
                                 fracSig=fracSig)
    sfMixAx[plt_ind_row, plt_ind_col].plot(sfs_plot, descrResp, color=modClr)

    # plot prefSF, center of mass
    #ctr = hf.sf_com(resps, sfVals);
    pSf = hf.descr_prefSf(prms_curr, dog_model=descrMod, all_sfs=all_sfs)
    sfMixAx[plt_ind_row, plt_ind_col].plot(pSf,
                                           1,
                                           linestyle='None',
                                           marker='v',
                                           color=modClr,
                                           clip_on=False)
    # plot at y=1
Exemple #3
0
                                  color=currClr,
                                  fmt='o',
                                  clip_on=False,
                                  label=dataTxt)

    # now, let's also plot the baseline, if complex cell
    if baseline_resp > 0:  # i.e. complex cell
        dispAx[c_plt_ind, 0].axhline(baseline_resp,
                                     color=currClr,
                                     linestyle='dashed')

    ## plot descr fit
    prms_curr = descrParams[c]
    descrResp = hf.get_descrResp(prms_curr,
                                 stim_sf=sfs_plot,
                                 DoGmodel=descrMod,
                                 baseline=baseline_resp,
                                 fracSig=fracSig,
                                 ref_params=ref_params)
    dispAx[c_plt_ind, 0].plot(sfs_plot,
                              descrResp,
                              color=currClr,
                              label='descr. fit')
    # --- and also ddogs prediction (perhaps...)
    if pred_org is not None:
        dispAx[c_plt_ind, 0].plot(sfVals,
                                  baseline_resp + pred_org[v_sfs, c],
                                  color=currClr,
                                  linestyle='--',
                                  clip_on=False,
                                  label='pred')
Exemple #4
0
                            np.square(respsCurr[d, v_sfs, v_cons[c]] -
                                      respMean[d, v_sfs, v_cons[c]]))
                    elif descrLoss == 2:
                        rS = respsCurr[d, v_sfs, v_cons[c]]
                        rA = respMean[d, v_sfs, v_cons[c]]
                        data_loss += np.sum(
                            np.square(
                                np.sign(rS) * np.sqrt(np.abs(rS)) -
                                np.sign(rA) * np.sqrt(np.abs(rA))))

                elif j == -1:  # model
                    # plot descr fit [1]
                    descrResp = hf.get_descrResp(prms_curr,
                                                 sfs_plot,
                                                 descrMod,
                                                 baseline=baseline_resp,
                                                 fracSig=fracSig,
                                                 ref_params=ref_params,
                                                 ref_rc_val=ref_rc_val)
                    dispAx[d][row_i][col_i].plot(sfs_plot,
                                                 descrResp - to_sub,
                                                 color=col)

                # set the nice things
                dispAx[d][row_i][col_i].set_xlim(
                    (0.5 * min(all_sfs), 1.2 * max(all_sfs)))

                dispAx[d][row_i][col_i].set_xscale('log')
                if expDir == 'LGN/' or forceLog == 1:  # we want double-log if it's the LGN!
                    dispAx[d][row_i][col_i].set_yscale('log')
                    #dispAx[d][row_i][col_i].set_ylim((minToPlot, 1.5*maxResp));
def dog_fit(resps, all_cons, all_sfs, DoGmodel, loss_type, n_repeats, joint=0, ref_varExpl=None, veThresh=-np.nan, fracSig=1, ftol=2.220446049250313e-09, jointMinCons=3):
  ''' Helper function for fitting descriptive funtions to SF responses
      if joint=True, (and DoGmodel is 1 or 2, i.e. not flexGauss), then we fit assuming
      a fixed ratio for the center-surround gains and [freq/radius]
      - i.e. of the 4 DoG parameters, 2 are fit separately for each contrast, and 2 are fit 
        jointly across all contrasts!
      - note that ref_varExpl (optional) will be of the same form that the output for varExpl will be
      - note that jointMinCons is the minimum # of contrasts that must be included for a joint fit to be run (e.g. 2)

      inputs: self-explanatory, except for resps, which should be "f1" from tabulateResponses 
      outputs: bestNLL, currParams, varExpl, prefSf, charFreq, [overallNLL, paramList; if joint=True]
  '''
  nCons = len(all_cons);
  if DoGmodel == 0:
    nParam = 5;
  else:
    nParam = 4;

  # unpack responses
  resps_mean = resps['mean'];
  resps_sem = resps['sem'];

  # next, let's compute some measures about the responses
  max_resp = np.nanmax(resps_mean.flatten());
  min_resp = np.nanmin(resps_mean.flatten());
  ############
  ### WARNING - we're subtracting min_resp-1 from all responses
  ############  
  #resps_mean = np.subtract(resps_mean, min_resp-1); # i.e. make the minimum response 1 spk/s...

  # and set up initial arrays
  bestNLL = np.ones((nCons, ), dtype=np.float32) * np.nan;
  currParams = np.ones((nCons, nParam), dtype=np.float32) * np.nan;
  varExpl = np.ones((nCons, ), dtype=np.float32) * np.nan;
  prefSf = np.ones((nCons, ), dtype=np.float32) * np.nan;
  charFreq = np.ones((nCons, ), dtype=np.float32) * np.nan;
  if joint>0:
    overallNLL = np.nan;
    params = np.nan;
    success = False;
  else:
    success = np.zeros((nCons, ), dtype=np.bool_);

  ### set bounds
  if DoGmodel == 0:
    min_bw = 1/4; max_bw = 10; # ranges in octave bandwidth
    bound_baseline = (0, max_resp);
    bound_range = (0, 1.5*max_resp);
    bound_mu = (0.01, 10);
    bound_sig = (np.maximum(0.1, min_bw/(2*np.sqrt(2*np.log(2)))), max_bw/(2*np.sqrt(2*np.log(2)))); # Gaussian at half-height
    if fracSig:
      bound_sigFrac = (0.2, 2);
      allBounds = (bound_baseline, bound_range, bound_mu, bound_sig, bound_sigFrac);
    else:
      allBounds = (bound_baseline, bound_range, bound_mu, bound_sig, bound_sig);
  elif DoGmodel == 1: # SACH
    bound_gainCent = (1, 3*max_resp);
    bound_radiusCent= (1e-2, 1.5);
    bound_gainSurr = (1e-2, 1); # multiplier on gainCent, thus the center must be weaker than the surround
    bound_radiusSurr = (1, 10); # (1,10) # multiplier on radiusCent, thus the surr. radius must be larger than the center
    if joint>0:
      if joint == 1: # original joint (fixed gain and radius ratios across all contrasts)
        bound_gainRatio = (1e-3, 1); # the surround gain will always be less than the center gain
        bound_radiusRatio= (1, 10); # the surround radius will always be greater than the ctr r
        # we'll add to allBounds later, reflecting joint gain/radius ratios common across all cons
        allBounds = (bound_gainRatio, bound_radiusRatio);
      elif joint == 2: # fixed surround radius for all contrasts
        allBounds = (bound_radiusSurr, );
      elif joint == 3: # fixed center AND surround radius for all contrasts
        allBounds = (bound_radiusCent, bound_radiusSurr);
      # In advance of the thesis/publishing the LGN data, we will replicate some of Sach's key results
      # In particular, his thesis covers 4 joint models:
      # -- volume ratio: center and surround radii are fixed, but gains can vary (already covered in joint == 3)
      # -- center radius: fixed center radius across contrast (joint=4) AND fixed volume (i.e. make surround gain constant across contrast)
      # -- surround radius: fixed surround radius across contrast (joint=5) AND fixed volume (i.e. make surround gain constant across contrast) // fixed not in proportion to center, but in absolute value
      # -- center-surround: center and surround radii can vary, but ratio of gains is fixed (joint == 6)
      # ---- NOTE: joints 3-5 have 2*nCons + 2 parms; joint==6 has 3*nCons + 1
      elif joint == 4: # fixed center radius
         allBounds = (bound_radiusCent, bound_gainSurr, ); # center radius AND bound_gainSurr are fixed across condition
      elif joint == 5: # fixed surround radius (again, in absolute terms here, not relative, as is usually specified)
         allBounds = (bound_gainSurr, bound_radiusSurr, ); # surround radius AND bound_gainSurr are fixed across condition
      elif joint == 6: # fixed center:surround gain ratio
         allBounds = (bound_gainSurr, ); # we can fix the ratio by allowing the center gain to vary and keeping the surround in fixed proportion
      elif joint == 7 or joint == 8: # center radius determined by slope! we'll also fixed surround radius; if joint == 8, fixed surround gain instead of radius
         bound_xc_slope = (-1, 1); # 220505 fits inbounded; 220519 fits bounded (-1,1)
         bound_xc_inter = (None, None); #bound_radiusCent; # intercept - shouldn't start outside the bounds we choose for radiusCent
         allBounds = (bound_xc_inter, bound_xc_slope, bound_radiusSurr, ) if joint == 7 else (bound_xc_slope, bound_xc_inter, bound_gainSurr, )
    else:
      allBounds = (bound_gainCent, bound_radiusCent, bound_gainSurr, bound_radiusSurr);
  elif DoGmodel == 2:
    bound_gainCent = (1e-3, None);
    bound_freqCent = (1e-3, 2e1);
    bound_gainFracSurr = (1e-3, 2); # surround gain always less than center gain NOTE: SHOULD BE (1e-3, 1)
    bound_freqFracSurr = (5e-2, 1); # surround freq always less than ctr freq NOTE: SHOULD BE (1e-1, 1)
    if joint>0:
      if joint == 1: # original joint (fixed gain and radius ratios across all contrasts)
        bound_gainRatio = (1e-3, 3);
        bound_freqRatio = (1e-1, 1); 
        # we'll add to allBounds later, reflecting joint gain/radius ratios common across all cons
        allBounds = (bound_gainRatio, bound_freqRatio);
      elif joint == 2: # fixed surround radius for all contrasts
        allBounds = (bound_freqFracSurr,);
      elif joint == 3: # fixed center AND surround radius for all contrasts
        allBounds = (bound_freqCent, bound_freqFracSurr);
    elif joint==0:
      bound_gainFracSurr = (1e-3, 1);
      bound_freqFracSurr = (1e-1, 1);
      allBounds = (bound_gainCent, bound_freqCent, bound_gainFracSurr, bound_freqFracSurr);

  ### organize responses -- and fit, if joint=0
  allResps = []; allRespsSem = []; allSfs = []; valCons = []; start_incl = 0; incl_inds = [];
  base_rate = np.min(resps_mean.flatten());
  for con in range(nCons):
    if all_cons[con] == 0: # skip 0 contrast...
        continue;
    else:
      valCons.append(all_cons[con]);
    valSfInds_curr = np.where(~np.isnan(resps_mean[con,:]))[0];
    resps_curr = resps_mean[con, valSfInds_curr];
    sem_curr   = resps_sem[con, valSfInds_curr];

    ### prepare for the joint fitting, if that's what we've specified!
    if joint>0:
      if resps_curr.size == 0:
         continue;
      if ref_varExpl is None:
        start_incl = 1; # hacky...
      if start_incl == 0:
        if ref_varExpl[con] < veThresh:
          continue; # i.e. we're not adding this; yes we could move this up, but keep it here for now
        else:
          start_incl = 1; # now we're ready to start adding to our responses that we'll fit!

      allResps.append(resps_curr);
      allRespsSem.append(sem_curr);
      allSfs.append(all_sfs[valSfInds_curr]);
      incl_inds.append(con);
      # and add to the bounds list!
      if DoGmodel == 1:
        if joint == 1: # add the center gain and center radius for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_radiusCent);
        if joint == 2: # add the center and surr. gain and center radius for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_radiusCent, bound_gainSurr);
        if joint == 3:  # add the center and surround gain for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_gainSurr);
        elif joint == 4: # fixed center radius, so add all other parameters
          allBounds = (*allBounds, bound_gainCent, bound_radiusSurr);
        elif joint == 5: # add the center and surr. gain and center radius for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_radiusCent);
        elif joint == 6: # fixed center:surround gain ratio
          allBounds = (*allBounds, bound_gainCent, bound_radiusCent, bound_radiusSurr);
        elif joint == 7: # center radius det. by slope, surround radius fixed
          allBounds = (*allBounds, bound_gainCent, bound_gainSurr);
        elif joint == 8: # center radius det. by slope, surround gain fixed
          allBounds = (*allBounds, bound_gainCent, bound_radiusSurr);
      elif DoGmodel == 2:
        if joint == 1: # add the center gain and center radius for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_freqCent);
        if joint == 2: # add the center and surr. gain and center radius for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_freqCent, bound_gainFracSurr);
        if joint == 3:  # add the center and surround gain for each contrast 
          allBounds = (*allBounds, bound_gainCent, bound_gainFracSurr);

      continue;

    ### otherwise, we're really going to fit here! [i.e. if joint is False]
    # first, specify the objection function!
    obj = lambda params: DoG_loss(params, resps_curr, all_sfs[valSfInds_curr], resps_std=sem_curr, loss_type=loss_type, DoGmodel=DoGmodel, joint=joint); # if we're here, then joint=0, but we'll still keep joint=joint

    for n_try in range(n_repeats):
      ###########
      ### pick initial params
      ###########
      init_params = dog_init_params(resps_curr, base_rate, all_sfs, valSfInds_curr, DoGmodel, fracSig=fracSig, bounds=allBounds)

      # choose optimization method
      if np.mod(n_try, 2) == 0:
          methodStr = 'L-BFGS-B';
      else:
          methodStr = 'TNC';
          
      try:
        wax = opt.minimize(obj, init_params, method=methodStr, bounds=allBounds);
      except:
        continue; # the fit has failed (bound issue, for example); so, go back to top of loop, try again
      
      # compare
      NLL = wax['fun'];
      params = wax['x'];

      if np.isnan(bestNLL[con]) or NLL < bestNLL[con]:
        bestNLL[con] = NLL;
        currParams[con, :] = params;
        curr_mod = get_descrResp(params, all_sfs[valSfInds_curr], DoGmodel);
        # TODO: 22.05.10 --> previously ignored sf==0 case for varExpl
        varExpl[con] = var_expl_direct(resps_curr, curr_mod);
        prefSf[con] = dog_prefSf(params, dog_model=DoGmodel, all_sfs=all_sfs[all_sfs>0]); # do not include 0 c/deg SF condition
        charFreq[con] = dog_charFreq(params, DoGmodel=DoGmodel);
        success[con] = wax['success'];

  if joint==0: # then we're DONE
    return bestNLL, currParams, varExpl, prefSf, charFreq, None, None, success; # placeholding None for overallNLL, params [full list]

  ### NOW, we do the fitting if joint=True
  if joint>0:
    if len(allResps)<jointMinCons: # need at least jointMinCons contrasts!
      return bestNLL, currParams, varExpl, prefSf, charFreq, overallNLL, params, success;
    ### now, we fit!
    for n_try in range(n_repeats):
      # first, estimate the joint parameters; then we'll add the per-contrast parameters after
      # --- we'll estimate the joint parameters based on the high contrast response
      ref_resps = allResps[-1];
      ref_init = dog_init_params(ref_resps, base_rate, all_sfs, all_sfs, DoGmodel);
      if joint == 1: # gain ratio (i.e. surround gain) [0] and shape ratio (i.e. surround radius) [1] are joint
        allInitParams = [ref_init[2], ref_init[3]];
      elif joint == 2: #  surround radius [0] (as ratio) is joint
        allInitParams = [ref_init[3]];
      elif joint == 3: # center radius [0] and surround radius [1] ratio are joint
        allInitParams = [ref_init[1], ref_init[3]];
      elif joint == 4: # center radius, surr. gain fixed
        allInitParams = [ref_init[1], ref_init[2]];
      elif joint == 5: #  surround gain AND radius [0] (as ratio in 2; fixed in 5) are joint
        allInitParams = [ref_init[2], ref_init[3]];
      elif joint == 6: # center:surround gain is fixed
        allInitParams = [ref_init[2]];
      elif joint == 7 or joint == 8: # center radius offset and slope fixed; surround radius fixed [7] or surr. gain fixed [8]
        # the slope will be calculated on log contrast, and will start from the lowest contrast
        # -- i.e. xc = np.power(10, init+slope*log10(con))
        # to start, let's assume no slope, so the intercept should be equal to our xc guess
        init_intercept, init_slope = random_in_range([-1.3, -0.6])[0], random_in_range([-0.1,0.2])[0]
        #init_intercept, init_slope = np.log10(ref_init[1]), 0;
        allInitParams = [init_intercept, init_slope, ref_init[3]] if joint == 7 else [init_intercept, init_slope, ref_init[2]];

      # now, we cycle through all responses and add the per-contrast parameters
      for resps_curr in allResps:
        curr_init = dog_init_params(resps_curr, base_rate, all_sfs, all_sfs, DoGmodel);
        if joint == 1:
          allInitParams = [*allInitParams, curr_init[0], curr_init[1]];
        elif joint == 2: # then we add center gain, center radius, surround gain (i.e. params 0:3
          allInitParams = [*allInitParams, curr_init[0], curr_init[1], curr_init[2]];
        elif joint == 3: # then we add center gain and surround gain (i.e. params 0, 2)
          allInitParams = [*allInitParams, curr_init[0], curr_init[2]];
        elif joint == 4: # then we add center gain, surround radius
          allInitParams = [*allInitParams, curr_init[0], curr_init[3]];
        elif joint == 5: # then we add center gain, center radius
          allInitParams = [*allInitParams, curr_init[0], curr_init[1]];
        elif joint == 6: # then we add center gain and both radii
          allInitParams = [*allInitParams, curr_init[0], curr_init[1], curr_init[3]];
        elif joint == 7: # then we add center and surround gains
          allInitParams = [*allInitParams, curr_init[0], curr_init[2]];
        elif joint == 8: # then we add center gain, surr. radius
          allInitParams = [*allInitParams, curr_init[0], curr_init[3]];

      methodStr = 'L-BFGS-B';
      obj = lambda params: DoG_loss(params, allResps, allSfs, resps_std=allRespsSem, loss_type=loss_type, DoGmodel=DoGmodel, joint=joint, n_fits=len(allResps), conVals=valCons, ); # if joint, it's just one fit!
      wax = opt.minimize(obj, allInitParams, method=methodStr, bounds=allBounds, options={'ftol': ftol});

      # compare
      NLL = wax['fun'];
      params_curr = wax['x'];

      if np.isnan(overallNLL) or NLL < overallNLL:
        overallNLL = NLL;
        params = params_curr;
        success = wax['success'];

    ### Done with multi-start fits; now, unpack the fits to fill in the "true" parameters for each contrast
    # --- first, get the global parameters
    ref_rc_val = None;
    if joint == 1:
      gain_rat, shape_rat = params[0], params[1];
    elif joint == 2:
      surr_shape = params[0]; # radius or frequency, if Tony model
    elif joint == 3:
      center_shape, surr_shape = params[0], params[1]; # radius or frequency, if Tony model
    elif joint == 4: # center radius, surr. gain fixed
      center_shape, surr_gain = params[0], params[1];
    elif joint == 5: # surr. gain, surr. radius fixed
      surr_gain, surr_shape = params[0], params[1];
      ref_rc_val = params[2]; # center radius for high contrast
    elif joint == 6: # ctr:surr gain fixed
      surr_gain = params[0];
    elif joint == 7: # center gain det. from slope, surround radius fixed
      xc_inter, xc_slope, surr_shape = params[0:3];
    elif joint == 8: # center gain det. from slope, surround gain fixed
      xc_inter, xc_slope, surr_gain = params[0:3];
      
    for con in range(len(allResps)):
      # --- then, go through each contrast and get the "local", i.e. per-contrast, parameters
      if joint == 1: # center gain, center shape
        center_gain = params[2+con*2]; 
        center_shape = params[3+con*2]; # shape, as in radius/freq, depending on DoGmodel
        curr_params = [center_gain, center_shape, gain_rat, shape_rat];
      elif joint == 2: # center gain, center radus, surround gain
        center_gain = params[1+con*3]; 
        center_shape = params[2+con*3];
        surr_gain = params[3+con*3];
        curr_params = [center_gain, center_shape, surr_gain, surr_shape];
      elif joint == 3: # center gain, surround gain
        center_gain = params[2+con*2]; 
        surr_gain = params[3+con*2];
        curr_params = [center_gain, center_shape, surr_gain, surr_shape];
      elif joint == 4: # center radius, surr. gain fixed for all contrasts
        center_gain = params[2+con*2]; 
        surr_shape = params[3+con*2];
        curr_params = [center_gain, center_shape, surr_gain, surr_shape];
      elif joint == 5: # surround gain, radius fixed for all contrasts
        center_gain = params[2+con*2]; 
        center_shape = params[3+con*2];
        curr_params = [center_gain, center_shape, surr_gain, surr_shape];
      elif joint == 6: # ctr:surr gain fixed for all contrasts
        center_gain = params[1+con*3]; 
        center_shape = params[2+con*3];
        surr_shape = params[3+con*3];
        curr_params = [center_gain, center_shape, surr_gain, surr_shape];
      elif joint == 7 or joint == 8: # surr radius [7] or gain [8] fixed; need to determine center radius from slope
        center_gain = params[3+con*2]; 
        center_shape = get_xc_from_slope(params[0], params[1], all_cons[con]);
        if joint == 7:
          surr_gain = params[4+con*2];
        elif joint == 8:
          surr_shape = params[4+con*2];
        curr_params = [center_gain, center_shape, surr_gain, surr_shape];

      # -- then the responses, and overall contrast index
      resps_curr = allResps[con];
      sem_curr   = allRespsSem[con];

      # now, compute!
      conInd = incl_inds[con];
      bestNLL[conInd] = DoG_loss(curr_params, resps_curr, allSfs[con], resps_std=sem_curr, loss_type=loss_type, DoGmodel=DoGmodel, joint=0, ref_rc_val=ref_rc_val); # now it's NOT joint!
      currParams[conInd, :] = curr_params;
      curr_mod = get_descrResp(curr_params, allSfs[con], DoGmodel, ref_rc_val=ref_rc_val);
      varExpl[conInd] = var_expl_direct(resps_curr, curr_mod);
      prefSf[conInd] = dog_prefSf(curr_params, dog_model=DoGmodel, all_sfs=all_sfs[all_sfs>0], ref_rc_val=ref_rc_val);
      charFreq[conInd] = dog_charFreq(curr_params, DoGmodel=DoGmodel);    

    # and NOW, we can return!
    return bestNLL, currParams, varExpl, prefSf, charFreq, overallNLL, params, success;
                                        linestyle='dashed',
                                        label='spon. rate')

        ## plot model fit
        dispAx[d][c_plt_ind, 0].plot(all_sfs[v_sfs],
                                     modAvg[d, v_sfs, v_cons[c]],
                                     alpha=0.7,
                                     color=modClr,
                                     clip_on=False,
                                     label=modTxt)
        dispAx[d][c_plt_ind, 0].axhline(modSponRate,
                                        color=modClr,
                                        linestyle='dashed')
        if descrParams is not None:
            prms_curr = descrParams[d, v_cons[c]]
            descrResp = hf.get_descrResp(prms_curr, sfs_plot, descrMod)
            dispAx[d][c_plt_ind, 0].plot(sfs_plot,
                                         descrResp,
                                         color=descrClr,
                                         label='descr. fit')

        ### right side of plots
        if d == 0:
            ## plot everything again on log-log coordinates...
            # first data
            dispAx[d][c_plt_ind, 1].errorbar(curr_sfs,
                                             curr_resp,
                                             respVar[d, v_sfs, v_cons[c]],
                                             fmt='o',
                                             color=dataClr,
                                             clip_on=False,
Exemple #7
0
        np.logical_and(np.array(sfErrsIndStd) > 0,
                       np.array(sfErrsIndStd) < 2))
    val_x = all_sfs[val_sfs][sfInds][val_errs]
    ind_var = np.var(np.array(sfErrsInd)[val_errs])
    curr_suppr['sfErrsInd_VAR'] = ind_var
    # - and put that value on the plot
    ax[4, 1].text(0.1, -0.25, 'var=%.3f' % ind_var)
else:
    curr_suppr['sfErrsInd_VAR'] = np.nan
    curr_suppr['sfRat_VAR'] = np.nan

#########
### NOW, let's evaluate the derivative of the SF tuning curve and get the correlation with the errors
#########
mod_sfs = np.geomspace(all_sfs[0], all_sfs[-1], 1000)
mod_resp = hf.get_descrResp(dfit_curr, mod_sfs, DoGmodel=dMod_num)
deriv = np.divide(np.diff(mod_resp), np.diff(np.log10(mod_sfs)))
deriv_norm = np.divide(deriv,
                       np.maximum(np.nanmax(deriv), np.abs(np.nanmin(deriv))))
# make the maximum response 1 (or -1)
# - then, what indices to evaluate for comparing with sfErr?
errSfs = all_sfs[val_sfs][sfInds]
mod_inds = [np.argmin(np.square(mod_sfs - x)) for x in errSfs]
deriv_norm_eval = deriv_norm[mod_inds]
# -- plot on [1, 1] (i.e. where the data is)
ax[1, 1].plot(mod_sfs, mod_resp, 'k--', label='fit (g)')
ax[1, 1].legend()
# Duplicate "twin" the axis to create a second y-axis
ax2 = ax[1, 1].twinx()
ax2.set_ylim([-1, 1])
# since the g' is normalized
def plot_save_superposition(which_cell, expDir, use_mod_resp=0, fitType=2, excType=1, useHPCfit=1, conType=None, lgnFrontEnd=None, force_full=1, f1_expCutoff=2, to_save=1):

  if use_mod_resp == 2:
    rvcAdj   = -1; # this means vec corrected F1, not phase adjustment F1...
    _applyLGNtoNorm = 0; # don't apply the LGN front-end to the gain control weights
    recenter_norm = 1;
    newMethod = 1; # yes, use the "new" method for mrpt (not that new anymore, as of 21.03)
    lossType = 1; # sqrt
    _sigmoidSigma = 5;

  basePath = os.getcwd() + '/'
  if 'pl1465' in basePath or useHPCfit:
    loc_str = 'HPC';
  else:
    loc_str = '';

  rvcName = 'rvcFits%s_220531' % loc_str if expDir=='LGN/' else 'rvcFits%s_220609' % loc_str
  rvcFits = None; # pre-define this as None; will be overwritten if available/needed
  if expDir == 'altExp/': # we don't adjust responses there...
    rvcName = None;
  dFits_base = 'descrFits%s_220609' % loc_str if expDir=='LGN/' else 'descrFits%s_220631' % loc_str
  if use_mod_resp == 1:
    rvcName = None; # Use NONE if getting model responses, only
    if excType == 1:
      fitBase = 'fitList_200417';
    elif excType == 2:
      fitBase = 'fitList_200507';
    lossType = 1; # sqrt
    fitList_nm = hf.fitList_name(fitBase, fitType, lossType=lossType);
  elif use_mod_resp == 2:
    rvcName = None; # Use NONE if getting model responses, only
    if excType == 1:
      fitBase = 'fitList%s_210308_dG' % loc_str
      if recenter_norm:
        #fitBase = 'fitList%s_pyt_210312_dG' % loc_str
        fitBase = 'fitList%s_pyt_210331_dG' % loc_str
    elif excType == 2:
      fitBase = 'fitList%s_pyt_210310' % loc_str
      if recenter_norm:
        #fitBase = 'fitList%s_pyt_210312' % loc_str
        fitBase = 'fitList%s_pyt_210331' % loc_str
    fitList_nm = hf.fitList_name(fitBase, fitType, lossType=lossType, lgnType=lgnFrontEnd, lgnConType=conType, vecCorrected=-rvcAdj);

  # ^^^ EDIT rvc/descrFits/fitList names here; 

  ############
  # Before any plotting, fix plotting paramaters
  ############
  plt.style.use('https://raw.githubusercontent.com/paul-levy/SF_diversity/master/paul_plt_style.mplstyle');
  from matplotlib import rcParams
  rcParams['font.size'] = 20;
  rcParams['pdf.fonttype'] = 42 # should be 42, but there are kerning issues
  rcParams['ps.fonttype'] = 42 # should be 42, but there are kerning issues
  rcParams['lines.linewidth'] = 2.5;
  rcParams['axes.linewidth'] = 1.5;
  rcParams['lines.markersize'] = 8; # this is in style sheet, just being explicit
  rcParams['lines.markeredgewidth'] = 0; # no edge, since weird tings happen then

  rcParams['xtick.major.size'] = 15
  rcParams['xtick.minor.size'] = 5; # no minor ticks
  rcParams['ytick.major.size'] = 15
  rcParams['ytick.minor.size'] = 0; # no minor ticks

  rcParams['xtick.major.width'] = 2
  rcParams['xtick.minor.width'] = 2;
  rcParams['ytick.major.width'] = 2
  rcParams['ytick.minor.width'] = 0

  rcParams['font.style'] = 'oblique';
  rcParams['font.size'] = 20;

  ############
  # load everything
  ############
  dataListNm = hf.get_datalist(expDir, force_full=force_full);
  descrFits_f0 = None;
  dLoss_num = 2; # see hf.descrFit_name/descrMod_name/etc for details
  if expDir == 'LGN/':
    rvcMod = 0; 
    dMod_num = 1;
    rvcDir = 1;
    vecF1 = -1;
  else:
    rvcMod = 1; # i.e. Naka-rushton (1)
    dMod_num = 3; # d-dog-s
    rvcDir = None; # None if we're doing vec-corrected
    if expDir == 'altExp/':
      vecF1 = 0;
    else:
      vecF1 = 1;

  dFits_mod = hf.descrMod_name(dMod_num)
  descrFits_name = hf.descrFit_name(lossType=dLoss_num, descrBase=dFits_base, modelName=dFits_mod, phAdj=1 if vecF1==-1 else None);

  ## now, let it run
  dataPath = basePath + expDir + 'structures/'
  save_loc = basePath + expDir + 'figures/'
  save_locSuper = save_loc + 'superposition_220713/'
  if use_mod_resp == 1:
    save_locSuper = save_locSuper + '%s/' % fitBase

  dataList = hf.np_smart_load(dataPath + dataListNm);
  print('Trying to load descrFits at: %s' % (dataPath + descrFits_name));
  descrFits = hf.np_smart_load(dataPath + descrFits_name);
  if use_mod_resp == 1 or use_mod_resp == 2:
    fitList = hf.np_smart_load(dataPath + fitList_nm);
  else:
    fitList = None;

  if not os.path.exists(save_locSuper):
    os.makedirs(save_locSuper)

  cells = np.arange(1, 1+len(dataList['unitName']))

  zr_rm = lambda x: x[x>0];
  # more flexible - only get values where x AND z are greater than some value "gt" (e.g. 0, 1, 0.4, ...)
  zr_rm_pair = lambda x, z, gt: [x[np.logical_and(x>gt, z>gt)], z[np.logical_and(x>gt, z>gt)]];
  # zr_rm_pair = lambda x, z: [x[np.logical_and(x>0, z>0)], z[np.logical_and(x>0, z>0)]] if np.logical_and(x!=[], z!=[])==True else [], [];

  # here, we'll save measures we are going use for analysis purpose - e.g. supperssion index, c50
  curr_suppr = dict();

  ############
  ### Establish the plot, load cell-specific measures
  ############
  nRows, nCols = 6, 2;
  cellName = dataList['unitName'][which_cell-1];
  expInd = hf.get_exp_ind(dataPath, cellName)[0]
  S = hf.np_smart_load(dataPath + cellName + '_sfm.npy')
  expData = S['sfm']['exp']['trial'];

  # 0th, let's load the basic tuning characterizations AND the descriptive fit
  try:
    dfit_curr = descrFits[which_cell-1]['params'][0,-1,:]; # single grating, highest contrast
  except:
    dfit_curr = None;
  # - then the basics
  try:
    basic_names, basic_order = dataList['basicProgName'][which_cell-1], dataList['basicProgOrder']
    basics = hf.get_basic_tunings(basic_names, basic_order);
  except:
    try:
      # we've already put the basics in the data structure... (i.e. post-sorting 2021 data)
      basic_names = ['','','','',''];
      basic_order = ['rf', 'sf', 'tf', 'rvc', 'ori']; # order doesn't matter if they are already loaded
      basics = hf.get_basic_tunings(basic_names, basic_order, preProc=S, reducedSave=True)
    except:
      basics = None;

  ### TEMPORARY: save the "basics" in curr_suppr; should live on its own, though; TODO
  curr_suppr['basics'] = basics;

  try:
    oriBW, oriCV = basics['ori']['bw'], basics['ori']['cv'];
  except:
    oriBW, oriCV = np.nan, np.nan;
  try:
    tfBW = basics['tf']['tfBW_oct'];
  except:
    tfBW = np.nan;
  try:
    suprMod = basics['rfsize']['suprInd_model'];
  except:
    suprMod = np.nan;
  try:
    suprDat = basics['rfsize']['suprInd_data'];
  except:
    suprDat = np.nan;

  try:
    cellType = dataList['unitType'][which_cell-1];
  except:
    # TODO: note, this is dangerous; thus far, only V1 cells don't have 'unitType' field in dataList, so we can safely do this
    cellType = 'V1';


  ############
  ### compute f1f0 ratio, and load the corresponding F0 or F1 responses
  ############
  f1f0_rat = hf.compute_f1f0(expData, which_cell, expInd, dataPath, descrFitName_f0=descrFits_f0)[0];
  curr_suppr['f1f0'] = f1f0_rat;
  respMeasure = 1 if f1f0_rat > 1 else 0;

  if vecF1 == 1:
    # get the correct, adjusted F1 response
    if expInd > f1_expCutoff and respMeasure == 1:
      respOverwrite = hf.adjust_f1_byTrial(expData, expInd);
    else:
      respOverwrite = None;

  if (respMeasure == 1 or expDir == 'LGN/') and expDir != 'altExp/' : # i.e. if we're looking at a simple cell, then let's get F1
    if vecF1 == 1:
      spikes_byComp = respOverwrite
      # then, sum up the valid components per stimulus component
      allCons = np.vstack(expData['con']).transpose();
      blanks = np.where(allCons==0);
      spikes_byComp[blanks] = 0; # just set it to 0 if that component was blank during the trial
    else:
      if rvcName is not None:
        try:
          rvcFits = hf.get_rvc_fits(dataPath, expInd, which_cell, rvcName=rvcName, rvcMod=rvcMod, direc=rvcDir, vecF1=vecF1);
        except:
          rvcFits = None;
      else:
        rvcFits = None
      spikes_byComp = hf.get_spikes(expData, get_f0=0, rvcFits=rvcFits, expInd=expInd);
    spikes = np.array([np.sum(x) for x in spikes_byComp]);
    rates = True if vecF1 == 0 else False; # when we get the spikes from rvcFits, they've already been converted into rates (in hf.get_all_fft)
    baseline = None; # f1 has no "DC", yadig?
  else: # otherwise, if it's complex, just get F0
    respMeasure = 0;
    spikes = hf.get_spikes(expData, get_f0=1, rvcFits=None, expInd=expInd);
    rates = False; # get_spikes without rvcFits is directly from spikeCount, which is counts, not rates!
    baseline = hf.blankResp(expData, expInd)[0]; # we'll plot the spontaneous rate
    # why mult by stimDur? well, spikes are not rates but baseline is, so we convert baseline to count (i.e. not rate, too)
    spikes = spikes - baseline*hf.get_exp_params(expInd).stimDur; 

  #print('###\nGetting spikes (data): rates? %d\n###' % rates);
  _, _, _, respAll = hf.organize_resp(spikes, expData, expInd, respsAsRate=rates); # only using respAll to get variance measures
  resps_data, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, overwriteSpikes=spikes, respsAsRates=rates, modsAsRate=rates);

  if fitList is None:
    resps = resps_data; # otherwise, we'll still keep resps_data for reference
  elif fitList is not None: # OVERWRITE the data with the model spikes!
    if use_mod_resp == 1:
      curr_fit = fitList[which_cell-1]['params'];
      modResp = mod_resp.SFMGiveBof(curr_fit, S, normType=fitType, lossType=lossType, expInd=expInd, cellNum=which_cell, excType=excType)[1];
      if f1f0_rat < 1: # then subtract baseline..
        modResp = modResp - baseline*hf.get_exp_params(expInd).stimDur; 
      # now organize the responses
      resps, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, overwriteSpikes=modResp, respsAsRates=False, modsAsRate=False);
    elif use_mod_resp == 2: # then pytorch model!
      resp_str = hf_sf.get_resp_str(respMeasure)
      curr_fit = fitList[which_cell-1][resp_str]['params'];
      model = mrpt.sfNormMod(curr_fit, expInd=expInd, excType=excType, normType=fitType, lossType=lossType, lgnFrontEnd=lgnFrontEnd, newMethod=newMethod, lgnConType=conType, applyLGNtoNorm=_applyLGNtoNorm)
      ### get the vec-corrected responses, if applicable
      if expInd > f1_expCutoff and respMeasure == 1:
        respOverwrite = hf.adjust_f1_byTrial(expData, expInd);
      else:
        respOverwrite = None;

      dw = mrpt.dataWrapper(expData, respMeasure=respMeasure, expInd=expInd, respOverwrite=respOverwrite); # respOverwrite defined above (None if DC or if expInd=-1)
      modResp = model.forward(dw.trInf, respMeasure=respMeasure, sigmoidSigma=_sigmoidSigma, recenter_norm=recenter_norm).detach().numpy();

      if respMeasure == 1: # make sure the blank components have a zero response (we'll do the same with the measured responses)
        blanks = np.where(dw.trInf['con']==0);
        modResp[blanks] = 0;
        # next, sum up across components
        modResp = np.sum(modResp, axis=1);
      # finally, make sure this fills out a vector of all responses (just have nan for non-modelled trials)
      nTrialsFull = len(expData['num']);
      modResp_full = np.nan * np.zeros((nTrialsFull, ));
      modResp_full[dw.trInf['num']] = modResp;

      if respMeasure == 0: # if DC, then subtract baseline..., as determined from data (why not model? we aren't yet calc. response to no stim, though it can be done)
        modResp_full = modResp_full - baseline*hf.get_exp_params(expInd).stimDur;

      # TODO: This is a work around for which measures are in rates vs. counts (DC vs F1, model vs data...)
      stimDur = hf.get_exp_params(expInd).stimDur;
      asRates = False;
      #divFactor = stimDur if asRates == 0 else 1;
      #modResp_full = np.divide(modResp_full, divFactor);
      # now organize the responses
      resps, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, overwriteSpikes=modResp_full, respsAsRates=asRates, modsAsRate=asRates);

  predResps = resps[2];

  respMean = resps[0]; # equivalent to resps[0];
  respStd = np.nanstd(respAll, -1); # take std of all responses for a given condition
  # compute SEM, too
  findNaN = np.isnan(respAll);
  nonNaN  = np.sum(findNaN == False, axis=-1);
  respSem = np.nanstd(respAll, -1) / np.sqrt(nonNaN);

  ############
  ### first, fit a smooth function to the overall pred V measured responses
  ### --- from this, we can measure how each example superposition deviates from a central tendency
  ### --- i.e. the residual relative to the "standard" input:output relationship
  ############
  all_resps = respMean[1:, :, :].flatten() # all disp>0
  all_preds = predResps[1:, :, :].flatten() # all disp>0
  # a model which allows negative fits
  #         myFit = lambda x, t0, t1, t2: t0 + t1*x + t2*x*x;
  #         non_nan = np.where(~np.isnan(all_preds)); # cannot fit negative values with naka-rushton...
  #         fitz, _ = opt.curve_fit(myFit, all_preds[non_nan], all_resps[non_nan], p0=[-5, 10, 5], maxfev=5000)
  # naka rushton
  myFit = lambda x, g, expon, c50: hf.naka_rushton(x, [0, g, expon, c50]) 
  non_neg = np.where(all_preds>0) # cannot fit negative values with naka-rushton...
  try:
    if use_mod_resp == 1: # the reference will ALWAYS be the data -- redo the above analysis for data
      predResps_data = resps_data[2];
      respMean_data = resps_data[0];
      all_resps_data = respMean_data[1:, :, :].flatten() # all disp>0
      all_preds_data = predResps_data[1:, :, :].flatten() # all disp>0
      non_neg_data = np.where(all_preds_data>0) # cannot fit negative values with naka-rushton...
      fitz, _ = opt.curve_fit(myFit, all_preds_data[non_neg_data], all_resps_data[non_neg_data], p0=[100, 2, 25], maxfev=5000)
    else:
      fitz, _ = opt.curve_fit(myFit, all_preds[non_neg], all_resps[non_neg], p0=[100, 2, 25], maxfev=5000)
    rel_c50 = np.divide(fitz[-1], np.max(all_preds[non_neg]));
  except:
    fitz = None;
    rel_c50 = -99;

  ############
  ### organize stimulus information
  ############
  all_disps = stimVals[0];
  all_cons = stimVals[1];
  all_sfs = stimVals[2];

  nCons = len(all_cons);
  nSfs = len(all_sfs);
  nDisps = len(all_disps);

  maxResp = np.maximum(np.nanmax(respMean), np.nanmax(predResps));
  # by disp
  clrs_d = cm.viridis(np.linspace(0,0.75,nDisps-1));
  lbls_d = ['disp: %s' % str(x) for x in range(nDisps)];
  # by sf
  val_sfs = hf.get_valid_sfs(S, disp=1, con=val_con_by_disp[1][0], expInd=expInd) # pick 
  clrs_sf = cm.viridis(np.linspace(0,.75,len(val_sfs)));
  lbls_sf = ['sf: %.2f' % all_sfs[x] for x in val_sfs];
  # by con
  val_con = all_cons;
  clrs_con = cm.viridis(np.linspace(0,.75,len(val_con)));
  lbls_con = ['con: %.2f' % x for x in val_con];

  ############
  ### create the figure
  ############
  fSuper, ax = plt.subplots(nRows, nCols, figsize=(10*nCols, 8*nRows))
  sns.despine(fig=fSuper, offset=10)

  allMix = [];
  allSum = [];

  ### plot reference tuning [row 1 (i.e. 2nd row)]
  ## on the right, SF tuning (high contrast)
  sfRef = hf.nan_rm(respMean[0, :, -1]); # high contrast tuning
  ax[1, 1].plot(all_sfs, sfRef, 'k-', marker='o', label='ref. tuning (d0, high con)', clip_on=False)
  ax[1, 1].set_xscale('log')
  ax[1, 1].set_xlim((0.1, 10));
  ax[1, 1].set_xlabel('sf (c/deg)')
  ax[1, 1].set_ylabel('response (spikes/s)')
  ax[1, 1].set_ylim((-5, 1.1*np.nanmax(sfRef)));
  ax[1, 1].legend(fontsize='x-small');

  #####
  ## then on the left, RVC (peak SF)
  #####
  sfPeak = np.argmax(sfRef); # stupid/simple, but just get the rvc for the max response
  v_cons_single = val_con_by_disp[0]
  rvcRef = hf.nan_rm(respMean[0, sfPeak, v_cons_single]);
  # now, if possible, let's also plot the RVC fit
  if rvcFits is not None:
    rvcFits = hf.get_rvc_fits(dataPath, expInd, which_cell, rvcName=rvcName, rvcMod=rvcMod);
    rel_rvc = rvcFits[0]['params'][sfPeak]; # we get 0 dispersion, peak SF
    plt_cons = np.geomspace(all_cons[0], all_cons[-1], 50);
    c50, pk = hf.get_c50(rvcMod, rel_rvc), rvcFits[0]['conGain'][sfPeak];
    c50_emp, c50_eval = hf.c50_empirical(rvcMod, rel_rvc); # determine c50 by optimization, numerical approx.
    if rvcMod == 0:
      rvc_mod = hf.get_rvc_model();
      rvcmodResp = rvc_mod(*rel_rvc, plt_cons);
    else: # i.e. mod=1 or mod=2
      rvcmodResp = hf.naka_rushton(plt_cons, rel_rvc);
    if baseline is not None:
      rvcmodResp = rvcmodResp - baseline; 
    ax[1, 0].plot(plt_cons, rvcmodResp, 'k--', label='rvc fit (c50=%.2f, gain=%0f)' %(c50, pk))
    # and save it
    curr_suppr['c50'] = c50; curr_suppr['conGain'] = pk;
    curr_suppr['c50_emp'] = c50_emp; curr_suppr['c50_emp_eval'] = c50_eval
  else:
    curr_suppr['c50'] = np.nan; curr_suppr['conGain'] = np.nan;
    curr_suppr['c50_emp'] = np.nan; curr_suppr['c50_emp_eval'] = np.nan;

  ax[1, 0].plot(all_cons[v_cons_single], rvcRef, 'k-', marker='o', label='ref. tuning (d0, peak SF)', clip_on=False)
  #         ax[1, 0].set_xscale('log')
  ax[1, 0].set_xlabel('contrast (%)');
  ax[1, 0].set_ylabel('response (spikes/s)')
  ax[1, 0].set_ylim((-5, 1.1*np.nanmax(rvcRef)));
  ax[1, 0].legend(fontsize='x-small');

  # plot the fitted model on each axis
  pred_plt = np.linspace(0, np.nanmax(all_preds), 100);
  if fitz is not None:
    ax[0, 0].plot(pred_plt, myFit(pred_plt, *fitz), 'r--', label='fit')
    ax[0, 1].plot(pred_plt, myFit(pred_plt, *fitz), 'r--', label='fit')

  for d in range(nDisps):
    if d == 0: # we don't care about single gratings!
      dispRats = [];
      continue; 
    v_cons = np.array(val_con_by_disp[d]);
    n_v_cons = len(v_cons);

    # plot split out by each contrast [0,1]
    for c in reversed(range(n_v_cons)):
      v_sfs = hf.get_valid_sfs(S, d, v_cons[c], expInd)
      for s in v_sfs:
        mixResp = respMean[d, s, v_cons[c]];
        allMix.append(mixResp);
        sumResp = predResps[d, s, v_cons[c]];
        allSum.append(sumResp);
  #      print('condition: d(%d), c(%d), sf(%d):: pred(%.2f)|real(%.2f)' % (d, v_cons[c], s, sumResp, mixResp))
        # PLOT in by-disp panel
        if c == 0 and s == v_sfs[0]:
          ax[0, 0].plot(sumResp, mixResp, 'o', color=clrs_d[d-1], label=lbls_d[d], clip_on=False)
        else:
          ax[0, 0].plot(sumResp, mixResp, 'o', color=clrs_d[d-1], clip_on=False)
        # PLOT in by-sf panel
        sfInd = np.where(np.array(v_sfs) == s)[0][0]; # will only be one entry, so just "unpack"
        try:
          if d == 1 and c == 0:
            ax[0, 1].plot(sumResp, mixResp, 'o', color=clrs_sf[sfInd], label=lbls_sf[sfInd], clip_on=False);
          else:
            ax[0, 1].plot(sumResp, mixResp, 'o', color=clrs_sf[sfInd], clip_on=False);
        except:
          pass;
          #pdb.set_trace();
        # plot baseline, if f0...
  #       if baseline is not None:
  #         [ax[0, i].axhline(baseline, linestyle='--', color='k', label='spon. rate') for i in range(2)];


    # plot averaged across all cons/sfs (i.e. average for the whole dispersion) [1,0]
    mixDisp = respMean[d, :, :].flatten();
    sumDisp = predResps[d, :, :].flatten();
    mixDisp, sumDisp = zr_rm_pair(mixDisp, sumDisp, 0.5);
    curr_rats = np.divide(mixDisp, sumDisp)
    curr_mn = geomean(curr_rats); curr_std = np.std(np.log10(curr_rats));
  #  curr_rat = geomean(np.divide(mixDisp, sumDisp));
    ax[2, 0].bar(d, curr_mn, yerr=curr_std, color=clrs_d[d-1]);
    ax[2, 0].set_yscale('log')
    ax[2, 0].set_ylim(0.1, 10);
  #  ax[2, 0].yaxis.set_ticks(minorticks)
    dispRats.append(curr_mn);
  #  ax[2, 0].bar(d, np.mean(np.divide(mixDisp, sumDisp)), color=clrs_d[d-1]);

    # also, let's plot the (signed) error relative to the fit
    if fitz is not None:
      errs = mixDisp - myFit(sumDisp, *fitz);
      ax[3, 0].bar(d, np.mean(errs), yerr=np.std(errs), color=clrs_d[d-1])
      # -- and normalized by the prediction output response
      errs_norm = np.divide(mixDisp - myFit(sumDisp, *fitz), myFit(sumDisp, *fitz));
      ax[4, 0].bar(d, np.mean(errs_norm), yerr=np.std(errs_norm), color=clrs_d[d-1])

    # and set some labels/lines, as needed
    if d == 1:
        ax[2, 0].set_xlabel('dispersion');
        ax[2, 0].set_ylabel('suppression ratio (linear)')
        ax[2, 0].axhline(1, ls='--', color='k')
        ax[3, 0].set_xlabel('dispersion');
        ax[3, 0].set_ylabel('mean (signed) error')
        ax[3, 0].axhline(0, ls='--', color='k')
        ax[4, 0].set_xlabel('dispersion');
        ax[4, 0].set_ylabel('mean (signed) error -- as frac. of fit prediction')
        ax[4, 0].axhline(0, ls='--', color='k')

    curr_suppr['supr_disp'] = dispRats;

  ### plot averaged across all cons/disps
  sfInds = []; sfRats = []; sfRatStd = []; 
  sfErrs = []; sfErrsStd = []; sfErrsInd = []; sfErrsIndStd = []; sfErrsRat = []; sfErrsRatStd = [];
  curr_errNormFactor = [];
  for s in range(len(val_sfs)):
    try: # not all sfs will have legitmate values;
      # only get mixtures (i.e. ignore single gratings)
      mixSf = respMean[1:, val_sfs[s], :].flatten();
      sumSf = predResps[1:, val_sfs[s], :].flatten();
      mixSf, sumSf = zr_rm_pair(mixSf, sumSf, 0.5);
      rats_curr = np.divide(mixSf, sumSf); 
      sfInds.append(s); sfRats.append(geomean(rats_curr)); sfRatStd.append(np.std(np.log10(rats_curr)));

      if fitz is not None:
        #curr_NR = myFit(sumSf, *fitz); # unvarnished
        curr_NR = np.maximum(myFit(sumSf, *fitz), 0.5); # thresholded at 0.5...

        curr_err = mixSf - curr_NR;
        sfErrs.append(np.mean(curr_err));
        sfErrsStd.append(np.std(curr_err))

        curr_errNorm = np.divide(mixSf - curr_NR, mixSf + curr_NR);
        sfErrsInd.append(np.mean(curr_errNorm));
        sfErrsIndStd.append(np.std(curr_errNorm))

        curr_errRat = np.divide(mixSf, curr_NR);
        sfErrsRat.append(np.mean(curr_errRat));
        sfErrsRatStd.append(np.std(curr_errRat));

        curr_normFactors = np.array(curr_NR)
        curr_errNormFactor.append(geomean(curr_normFactors[curr_normFactors>0]));
      else:
        sfErrs.append([]);
        sfErrsStd.append([]);
        sfErrsInd.append([]);
        sfErrsIndStd.append([]);
        sfErrsRat.append([]);
        sfErrsRatStd.append([]);
        curr_errNormFactor.append([]);
    except:
      pass

  # get the offset/scale of the ratio so that we can plot a rescaled/flipped version of
  # the high con/single grat tuning for reference...does the suppression match the response?
  offset, scale = np.nanmax(sfRats), np.nanmax(sfRats) - np.nanmin(sfRats);
  sfRef = hf.nan_rm(respMean[0, val_sfs, -1]); # high contrast tuning
  sfRefShift = offset - scale * (sfRef/np.nanmax(sfRef))
  ax[2,1].scatter(all_sfs[val_sfs][sfInds], sfRats, color=clrs_sf[sfInds], clip_on=False)
  ax[2,1].errorbar(all_sfs[val_sfs][sfInds], sfRats, sfRatStd, color='k', linestyle='-', clip_on=False, label='suppression tuning')
  #         ax[2,1].plot(all_sfs[val_sfs][sfInds], sfRats, 'k-', clip_on=False, label='suppression tuning')
  ax[2,1].plot(all_sfs[val_sfs], sfRefShift, 'k--', label='ref. tuning', clip_on=False)
  ax[2,1].axhline(1, ls='--', color='k')
  ax[2,1].set_xlabel('sf (cpd)')
  ax[2,1].set_xscale('log')
  ax[2,1].set_xlim((0.1, 10));
  #ax[2,1].set_xlim((np.min(all_sfs), np.max(all_sfs)));
  ax[2,1].set_ylabel('suppression ratio');
  ax[2,1].set_yscale('log')
  #ax[2,1].yaxis.set_ticks(minorticks)
  ax[2,1].set_ylim(0.1, 10);        
  ax[2,1].legend(fontsize='x-small');
  curr_suppr['supr_sf'] = sfRats;

  ### residuals from fit of suppression
  if fitz is not None:
    # mean signed error: and labels/plots for the error as f'n of SF
    ax[3,1].axhline(0, ls='--', color='k')
    ax[3,1].set_xlabel('sf (cpd)')
    ax[3,1].set_xscale('log')
    ax[3,1].set_xlim((0.1, 10));
    #ax[3,1].set_xlim((np.min(all_sfs), np.max(all_sfs)));
    ax[3,1].set_ylabel('mean (signed) error');
    ax[3,1].errorbar(all_sfs[val_sfs][sfInds], sfErrs, sfErrsStd, color='k', marker='o', linestyle='-', clip_on=False)
    # -- and normalized by the prediction output response + output respeonse
    val_errs = np.logical_and(~np.isnan(sfErrsRat), np.logical_and(np.array(sfErrsIndStd)>0, np.array(sfErrsIndStd) < 2));
    norm_subset = np.array(sfErrsInd)[val_errs];
    normStd_subset = np.array(sfErrsIndStd)[val_errs];
    ax[4,1].axhline(0, ls='--', color='k')
    ax[4,1].set_xlabel('sf (cpd)')
    ax[4,1].set_xscale('log')
    ax[4,1].set_xlim((0.1, 10));
    #ax[4,1].set_xlim((np.min(all_sfs), np.max(all_sfs)));
    ax[4,1].set_ylim((-1, 1));
    ax[4,1].set_ylabel('error index');
    ax[4,1].errorbar(all_sfs[val_sfs][sfInds][val_errs], norm_subset, normStd_subset, color='k', marker='o', linestyle='-', clip_on=False)
    # -- AND simply the ratio between the mixture response and the mean expected mix response (i.e. Naka-Rushton)
    # --- equivalent to the suppression ratio, but relative to the NR fit rather than perfect linear summation
    val_errs = np.logical_and(~np.isnan(sfErrsRat), np.logical_and(np.array(sfErrsRatStd)>0, np.array(sfErrsRatStd) < 2));
    rat_subset = np.array(sfErrsRat)[val_errs];
    ratStd_subset = np.array(sfErrsRatStd)[val_errs];
    #ratStd_subset = (1/np.log(2))*np.divide(np.array(sfErrsRatStd)[val_errs], rat_subset);
    ax[5,1].scatter(all_sfs[val_sfs][sfInds][val_errs], rat_subset, color=clrs_sf[sfInds][val_errs], clip_on=False)
    ax[5,1].errorbar(all_sfs[val_sfs][sfInds][val_errs], rat_subset, ratStd_subset, color='k', linestyle='-', clip_on=False, label='suppression tuning')
    ax[5,1].axhline(1, ls='--', color='k')
    ax[5,1].set_xlabel('sf (cpd)')
    ax[5,1].set_xscale('log')
    ax[5,1].set_xlim((0.1, 10));
    ax[5,1].set_ylabel('suppression ratio (wrt NR)');
    ax[5,1].set_yscale('log', basey=2)
  #         ax[2,1].yaxis.set_ticks(minorticks)
    ax[5,1].set_ylim(np.power(2.0, -2), np.power(2.0, 2));
    ax[5,1].legend(fontsize='x-small');
    # - compute the variance - and put that value on the plot
    errsRatVar = np.var(np.log2(sfErrsRat)[val_errs]);
    curr_suppr['sfRat_VAR'] = errsRatVar;
    ax[5,1].text(0.1, 2, 'var=%.2f' % errsRatVar);

    # compute the unsigned "area under curve" for the sfErrsInd, and normalize by the octave span of SF values considered
    val_errs = np.logical_and(~np.isnan(sfErrsRat), np.logical_and(np.array(sfErrsIndStd)>0, np.array(sfErrsIndStd) < 2));
    val_x = all_sfs[val_sfs][sfInds][val_errs];
    ind_var = np.var(np.array(sfErrsInd)[val_errs]);
    curr_suppr['sfErrsInd_VAR'] = ind_var;
    # - and put that value on the plot
    ax[4,1].text(0.1, -0.25, 'var=%.3f' % ind_var);
  else:
    curr_suppr['sfErrsInd_VAR'] = np.nan
    curr_suppr['sfRat_VAR'] = np.nan

  #########
  ### NOW, let's evaluate the derivative of the SF tuning curve and get the correlation with the errors
  #########
  mod_sfs = np.geomspace(all_sfs[0], all_sfs[-1], 1000);
  mod_resp = hf.get_descrResp(dfit_curr, mod_sfs, DoGmodel=dMod_num);
  deriv = np.divide(np.diff(mod_resp), np.diff(np.log10(mod_sfs)))
  deriv_norm = np.divide(deriv, np.maximum(np.nanmax(deriv), np.abs(np.nanmin(deriv)))); # make the maximum response 1 (or -1)
  # - then, what indices to evaluate for comparing with sfErr?
  errSfs = all_sfs[val_sfs][sfInds];
  mod_inds = [np.argmin(np.square(mod_sfs-x)) for x in errSfs];
  deriv_norm_eval = deriv_norm[mod_inds];
  # -- plot on [1, 1] (i.e. where the data is)
  ax[1,1].plot(mod_sfs, mod_resp, 'k--', label='fit (g)')
  ax[1,1].legend();
  # Duplicate "twin" the axis to create a second y-axis
  ax2 = ax[1,1].twinx();
  ax2.set_xscale('log'); # have to re-inforce log-scale?
  ax2.set_ylim([-1, 1]); # since the g' is normalized
  # make a plot with different y-axis using second axis object
  ax2.plot(mod_sfs[1:], deriv_norm, '--', color="red", label='g\'');
  ax2.set_ylabel("deriv. (normalized)",color="red")
  ax2.legend();
  sns.despine(ax=ax2, offset=10, right=False);
  # -- and let's plot rescaled and shifted version in [2,1]
  offset, scale = np.nanmax(sfRats), np.nanmax(sfRats) - np.nanmin(sfRats);
  derivShift = offset - scale * (deriv_norm/np.nanmax(deriv_norm));
  ax[2,1].plot(mod_sfs[1:], derivShift, 'r--', label='deriv(ref. tuning)', clip_on=False)
  ax[2,1].legend(fontsize='x-small');
  # - then, normalize the sfErrs/sfErrsInd and compute the correlation coefficient
  if fitz is not None:
    norm_sfErr = np.divide(sfErrs, np.nanmax(np.abs(sfErrs)));
    norm_sfErrInd = np.divide(sfErrsInd, np.nanmax(np.abs(sfErrsInd))); # remember, sfErrsInd is normalized per condition; this is overall
    non_nan = np.logical_and(~np.isnan(norm_sfErr), ~np.isnan(deriv_norm_eval))
    corr_nsf, corr_nsfN = np.corrcoef(deriv_norm_eval[non_nan], norm_sfErr[non_nan])[0,1], np.corrcoef(deriv_norm_eval[non_nan], norm_sfErrInd[non_nan])[0,1]
    curr_suppr['corr_derivWithErr'] = corr_nsf;
    curr_suppr['corr_derivWithErrsInd'] = corr_nsfN;
    ax[3,1].text(0.1, 0.25*np.nanmax(sfErrs), 'corr w/g\' = %.2f' % corr_nsf)
    ax[4,1].text(0.1, 0.25, 'corr w/g\' = %.2f' % corr_nsfN)
  else:
    curr_suppr['corr_derivWithErr'] = np.nan;
    curr_suppr['corr_derivWithErrsInd'] = np.nan;

  # make a polynomial fit
  try:
    hmm = np.polyfit(allSum, allMix, deg=1) # returns [a, b] in ax + b 
  except:
    hmm = [np.nan];
  curr_suppr['supr_index'] = hmm[0];

  for j in range(1):
    for jj in range(nCols):
      ax[j, jj].axis('square')
      ax[j, jj].set_xlabel('prediction: sum(components) (imp/s)');
      ax[j, jj].set_ylabel('mixture response (imp/s)');
      ax[j, jj].plot([0, 1*maxResp], [0, 1*maxResp], 'k--')
      ax[j, jj].set_xlim((-5, maxResp));
      ax[j, jj].set_ylim((-5, 1.1*maxResp));
      ax[j, jj].set_title('Suppression index: %.2f|%.2f' % (hmm[0], rel_c50))
      ax[j, jj].legend(fontsize='x-small');

  fSuper.suptitle('Superposition: %s #%d [%s; f1f0 %.2f; szSupr[dt/md] %.2f/%.2f; oriBW|CV %.2f|%.2f; tfBW %.2f]' % (cellType, which_cell, cellName, f1f0_rat, suprDat, suprMod, oriBW, oriCV, tfBW))

  if fitList is None:
    save_name = 'cell_%03d.pdf' % which_cell
  else:
    save_name = 'cell_%03d_mod%s.pdf' % (which_cell, hf.fitType_suffix(fitType))
  pdfSv = pltSave.PdfPages(str(save_locSuper + save_name));
  pdfSv.savefig(fSuper)
  pdfSv.close();

  #########
  ### Finally, add this "superposition" to the newest 
  #########

  if to_save:

    if fitList is None:
      from datetime import datetime
      suffix = datetime.today().strftime('%y%m%d')
      super_name = 'superposition_analysis_%s.npy' % suffix;
    else:
      super_name = 'superposition_analysis_mod%s.npy' % hf.fitType_suffix(fitType);

    pause_tm = 5*np.random.rand();
    print('sleeping for %d secs (#%d)' % (pause_tm, which_cell));
    time.sleep(pause_tm);

    if os.path.exists(dataPath + super_name):
      suppr_all = hf.np_smart_load(dataPath + super_name);
    else:
      suppr_all = dict();
    suppr_all[which_cell-1] = curr_suppr;
    np.save(dataPath + super_name, suppr_all);
  
  return curr_suppr;