############################### ''' ) print(pd.crosstab(predictions_nn, test_class_set['diagnosis'], rownames=['Predicted Values'], colnames=['Actual Values'])) print("Here is our mean accuracy on the test set:\n {0: .3f}"\ .format(accuracy_nn)) print("The test error rate for our model is:\n {0: .3f}"\ .format(test_error_rate_nn)) # ROC Curve hf.plot_roc_curve(fpr3, tpr3, auc_nn, 'nn') # Zoomed in ROC Curve hf.plot_roc_curve(fpr3, tpr3, auc_nn, 'nn', (-0.001, 0.2), (0.7, 1.05)) else: def return_nn(): ''' Function to output values created in script ''' return fpr3, tpr3, auc_nn, predictions_nn, test_error_rate_nn # Keep Cross validation metrics mean_cv_nn, std_error_nn = hf.cross_val_metrics(fit_nn, training_set_scaled, class_set['diagnosis'],
############################### ''' ) print(pd.crosstab(predictions_RF, test_class_set['diagnosis'], rownames=['Predicted Values'], colnames=['Actual Values'])) print("Here is our mean accuracy on the test set:\n {0: 0.3f}"\ .format(accuracy_RF)) print("The test error rate for our model is:\n {0: .3f}"\ .format(test_error_rate_RF)) # ROC Curve hf.plot_roc_curve(fpr2, tpr2, auc_rf, 'rf') # Zoomed in ROC Curve hf.plot_roc_curve(fpr2, tpr2, auc_rf, 'rf', (-0.001, 0.2), (0.7, 1.05)) else: def return_rf(): ''' Function to output values created in script ''' return fpr2, tpr2, auc_rf, predictions_RF, test_error_rate_RF mean_cv_rf, std_error_rf = hf.cross_val_metrics(fit_RF, training_set, class_set['diagnosis'], print_results = False)
rownames=['Predicted Values'], colnames=['Actual Values'])) # TEST ERROR RATE!! print("Here is our accuracy for our test set:\n {0: .3f}"\ .format(accuracy)) # Here we calculate the test error rate! print("The test error rate for our model is:\n {0: .3f}"\ .format(test_error_rate)) # ROC Curve # NOTE: These functions were created in the helperFunctions.py # script to reduce lines of code # refer to helper.py for additional information hf.plot_roc_curve(fpr, tpr, auc_knn, 'knn') # Zoomed in ROC Curve hf.plot_roc_curve(fpr, tpr, auc_knn, 'knn', (-0.001, 0.2), (0.7, 1.05)) else: def return_knn(): ''' Function to output values created in script ''' return fpr, tpr, auc_knn, predictions, test_error_rate mean_cv_knn, std_error_knn = hf.cross_val_metrics(fit_knn, training_set, class_set['diagnosis'], print_results=False)