Exemple #1
0
from sklearn import feature_selection
from sklearn import decomposition
from sklearn import discriminant_analysis
from sklearn import preprocessing

import sys
from os import listdir
from os.path import isfile, join
from helpers import features_analysis, procces_stocks, data_manipulation, download_quandl_data, ml_dataset, classifier_utils, report_generator, Iteration, Stacking, Boosting

fig_size = [10, 6]
plt.rcParams["figure.figsize"] = fig_size
sb.set_style('darkgrid')
warnings.filterwarnings("ignore", category=DeprecationWarning)

GOLD = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/GOLD.csv')
SILVER = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/SILVER.csv')
PLAT = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/PLAT.csv')
OIL_BRENT = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/OIL_BRENT.csv')

USD_GBP = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/USD_GBP.csv')
JPY_USD = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/JPY_USD.csv')
AUD_USD = data_manipulation.read_csv_data(
    '/Users/Pablo/Desktop/TFM/Data/AUD_USD.csv')

INDEX_DJIA = data_manipulation.read_csv_data(
from sklearn import feature_selection
from sklearn import decomposition
from sklearn import discriminant_analysis
from sklearn import preprocessing

import sys
from os import listdir
from os.path import isfile, join
from helpers import features_analysis, procces_stocks, data_manipulation, download_quandl_data, ml_dataset, classifier_utils, report_generator, Iteration, Stacking, Boosting

fig_size = [10, 6]
plt.rcParams["figure.figsize"] = fig_size
sb.set_style('darkgrid')
warnings.filterwarnings("ignore", category=DeprecationWarning) 

GOLD = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/GOLD.csv')
SILVER = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/SILVER.csv')
PLAT = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/PLAT.csv')
OIL_BRENT = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/OIL_BRENT.csv')

USD_GBP = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/USD_GBP.csv')
JPY_USD = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/JPY_USD.csv')
AUD_USD = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/AUD_USD.csv')

INDEX_DJIA = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_DJIA.csv')
INDEX_HSI = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_HSI.csv')
INDEX_IBEX = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_IBEX.csv')
INDEX_N225 = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_N225.csv')
INDEX_SP500 = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_SP500.csv')
INDEX_AXJO = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_AXJO.csv')
INDEX_FCHI = data_manipulation.read_csv_data('/Users/Pablo/Desktop/TFM/Data/INDEX_FCHI.csv')