def plot_results(self, nrnManager, saving_dir): for i, var in enumerate(self.param['var_to_plot']): secs = self.param['section_to_plot'] vecs_to_plot = self.build_vecs_to_plot(var, secs, self.manager.refs['VecRef']) self.manager.plot_vecs(vecs_to_plot, figure_num=i) if var == 'v': plt.ylabel("Voltage [mV]") plt.xlabel("Time [ms]") plt.ylim(-90) # Setting the minimum limits elif var == 'cai' or var == 'cali': plt.xlabel("Time [ms]") plt.ylabel("Concentration [mM]") elif var == 'ica': plt.xlabel("Time [ms]") plt.ylabel("Current [nA]") # fig_file = 'plot_' + var plt.savefig(os.path.join(saving_dir, fig_file)) if self.param['bio_on']: from helpers.plotter import EcellPlotter ecp = EcellPlotter() x_start = self.param['t_equilibrium_ecell'] x_stop = x_start + self.param['tStop']/1e3 for stim_spine in self.param['stimulated_spines']: spine = nrnManager.spines[stim_spine] ecp.plot_timeCourses(spine.ecellMan.timeCourses, save=True, dir=saving_dir, name=spine.id, x_lims= [x_start, x_stop]) ecp.plot_weight(spine.ecellMan.timeCourses, dir=saving_dir)
def plot_results(self, nrnManager, saving_dir): for i, var in enumerate(self.param['var_to_plot']): secs = self.param['section_to_plot'] vecs_to_plot = self.build_vecs_to_plot(var, secs, self.manager.refs['VecRef']) self.manager.plot_vecs(vecs_to_plot, figure_num=i) if var == 'v': plt.ylabel("Voltage [mV]") plt.xlabel("Time [ms]") plt.ylim(-90) # Setting the minimum limits elif var == 'cai' or var == 'cali': plt.xlabel("Time [ms]") plt.ylabel("Concentration [mM]") elif var == 'ica': plt.xlabel("Time [ms]") plt.ylabel("Current [nA]") # fig_file = 'plot_' + var plt.savefig(os.path.join(saving_dir, fig_file)) if self.param['bio_on']: from helpers.plotter import EcellPlotter ecp = EcellPlotter() x_start = self.param['t_equilibrium_ecell'] x_stop = x_start + self.param['tStop'] / 1e3 for stim_spine in self.param['stimulated_spines']: spine = nrnManager.spines[stim_spine] ecp.plot_timeCourses(spine.ecellMan.timeCourses, save=True, dir=saving_dir, name=spine.id, x_lims=[x_start, x_stop]) ecp.plot_weight(spine.ecellMan.timeCourses, dir=saving_dir)
parameter_file = sys.argv[1] param = parameters.ParameterSet(parameter_file) ## Setting the mat plotlib backend import matplotlib if param['interactive'] == False: matplotlib.use('Agg') print "Switching backend to Agg. Batch execution" import matplotlib.pyplot as plt from helpers.plotter import EcellPlotter import helpers loader = helpers.Loader() # ecellManager = testChangeCalciumValue(interval, caValue) if param['running_type'] == 'train': ecellManager = testCalciumTrain(param['num_spikes'], param['delay'], param['biochemical_filename']) ecp = EcellPlotter() if param['interactive'] == False: dir = loader.create_new_dir(prefix=os.getcwd()) loader.save(ecellManager.timeCourses, dir, "timeCourses") ecp.plot_timeCourses(ecellManager.timeCourses, save=True, dir=dir) ecp.plot_weight(ecellManager.timeCourses, dir=dir) else: ecp.plot_timeCourses(ecellManager.timeCourses) ecp.plot_weight(ecellManager.timeCourses) plt.show()
sys.exit() parameter_file = sys.argv[1] param = parameters.ParameterSet(parameter_file) ## Setting the mat plotlib backend import matplotlib if param['interactive'] == False: matplotlib.use('Agg') print "Switching backend to Agg. Batch execution" import matplotlib.pyplot as plt from helpers.plotter import EcellPlotter import helpers loader = helpers.Loader() # ecellManager = testChangeCalciumValue(interval, caValue) if param['running_type'] == 'train': ecellManager = testCalciumTrain(param['num_spikes'], param['delay'], param['biochemical_filename']) ecp = EcellPlotter() if param['interactive'] == False: dir = loader.create_new_dir(prefix=os.getcwd()) loader.save(ecellManager.timeCourses, dir, "timeCourses") ecp.plot_timeCourses(ecellManager.timeCourses, save=True, dir=dir) ecp.plot_weight(ecellManager.timeCourses, dir=dir) else: ecp.plot_timeCourses(ecellManager.timeCourses) ecp.plot_weight(ecellManager.timeCourses) plt.show()