def receive_names_in_path(_path): all_names = [] for tree in fetch_trees_from_path(_path): all_names.extend(find_all_names_in_tree(tree)) return flat([split_snake_case_to_words(name) for name in all_names if not is_magic_name(name)])
async def main(username, password, start, end, output, njobs): tasks = [] data = [] async with ClientSession(connector=TCPConnector(ssl=False)) as session: extractor = LivetexExtractor( username, password, start, end, session, concurrency_level=njobs, ) logging.info('Logging in with the given credentials...') await extractor.login(session) logging.info('Successful login!') logging.info('Fetching employee list...') await extractor.get_employees(session) logging.info('Employee list received!') topics_short = await extractor.get_dialogs_short() if not topics_short: return topics_count = len(topics_short) logging.info('Fetching %i dialogs...', topics_count) for topic in topics_short: task = asyncio.create_task( extractor.get_dialog_info(topic['topicId'])) tasks.append(task) try: for res in tqdm(asyncio.as_completed(tasks), total=topics_count): data.append(await res) finally: data = flat(data) dict_writer = csv.DictWriter(output, data[0].keys()) dict_writer.writeheader() dict_writer.writerows( sorted(data, key=lambda x: x['dialog_start'] + x['timestamp']))
nets += [(net, net_create)] print("Name: ", net_create.__name__) print("Number of Neurons (relus): ", net.neuronCount()) print("Number of Parameters: ", sum([h.product(s.size()) for s in net.parameters()])) print("Depth (relu layers): ", net.depth()) print() net.showNet() print() if args.domain == []: models = [createModel(net, goals.Box(args.width), "Box") for net in nets] else: models = h.flat([[ createModel(net, h.parseValues(d, goals, scheduling), h.catStrs(d)) for net in nets ] for d in args.domain]) patience = 30 last_best_origin = 0 best_origin = 1e10 last_best = 0 best = 1e10 decay = True with h.mopen(args.dont_write, os.path.join(out_dir, "log.txt"), "w") as f: startTime = timer() for epoch in range(1, args.epochs + 1): if f is not None: f.flush() if (epoch - 1) % args.test_freq == 0 and (epoch > 1 or args.test_first):
nets += [getattr(models, n) for n in args.net] nets = [(n(num_classes).infer(input_dims), n) for n in nets] for net, net_create in nets: print("Name: ", net_create.__name__) print("Number of Neurons (relus): ", net.neuronCount()) print("Number of Parameters: ", sum([h.product(s.size()) for s in net.parameters()])) print() if args.domain == []: models = [createModel(net, domains.Box, "Box") for net in nets] else: models = h.flat( [[createModel(net, getattr(domains, d), d) for net in nets] for d in args.domain]) def adjust_learning_rate(optimizer, epoch): lr = args.lr if epoch >= 0.85 * args.epochs: lr = args.lr * 0.01 elif epoch >= 0.7 * args.epochs: lr = args.lr * 0.1 for param_group in optimizer.param_groups: param_group['lr'] = lr with open(os.path.join(out_dir, "log.txt"), "w") as f:
m = getattr(models,n) net_create = (lambda m: lambda: buildNet(m))(m) # why doesn't python do scoping right? This is a thunk. It is bad. net_create.__name__ = n net = buildNet(m) net.__name__ = n nets += [ (net, net_create) ] print("Name: ", net_create.__name__) print("Number of Neurons (relus): ", net.neuronCount()) print("Number of Parameters: ", sum([h.product(s.size()) for s in net.parameters()])) print() if args.domain == []: models = [ createModel(net, domains.Box(args.width), "Box") for net in nets] else: models = h.flat([[createModel(net, h.parseValues(domains,d), h.catStrs(d)) for net in nets] for d in args.domain]) with h.mopen(args.dont_write, os.path.join(out_dir, "log.txt"), "w") as f: startTime = timer() for epoch in range(1, args.epochs + 1): if (epoch - 1) % args.test_freq == 0: with Timer("test before epoch "+str(epoch),"sample", 10000): test(models, epoch, f) h.printBoth("Elapsed-Time: {:.2f}s\n".format(timer() - startTime), f = f) if args.epochs <= args.test_freq: break with Timer("train","sample", 60000): train(epoch, models)
def receive_function_verbs_in_path(_path): return flat([extract_verbs_from_snake_case(function_name) for function_name in receive_function_names_in_path(_path)])