Exemple #1
0
def receive_names_in_path(_path):
    all_names = []
    for tree in fetch_trees_from_path(_path):
        all_names.extend(find_all_names_in_tree(tree))

    return flat([split_snake_case_to_words(name)
                 for name in all_names
                 if not is_magic_name(name)])
Exemple #2
0
async def main(username, password, start, end, output, njobs):
    tasks = []
    data = []
    async with ClientSession(connector=TCPConnector(ssl=False)) as session:
        extractor = LivetexExtractor(
            username,
            password,
            start,
            end,
            session,
            concurrency_level=njobs,
        )
        logging.info('Logging in with the given credentials...')
        await extractor.login(session)
        logging.info('Successful login!')
        logging.info('Fetching employee list...')
        await extractor.get_employees(session)
        logging.info('Employee list received!')
        topics_short = await extractor.get_dialogs_short()
        if not topics_short:
            return
        topics_count = len(topics_short)
        logging.info('Fetching %i dialogs...', topics_count)
        for topic in topics_short:
            task = asyncio.create_task(
                extractor.get_dialog_info(topic['topicId']))
            tasks.append(task)
        try:
            for res in tqdm(asyncio.as_completed(tasks), total=topics_count):
                data.append(await res)
        finally:
            data = flat(data)
            dict_writer = csv.DictWriter(output, data[0].keys())
            dict_writer.writeheader()
            dict_writer.writerows(
                sorted(data, key=lambda x: x['dialog_start'] + x['timestamp']))
Exemple #3
0
    nets += [(net, net_create)]

    print("Name: ", net_create.__name__)
    print("Number of Neurons (relus): ", net.neuronCount())
    print("Number of Parameters: ",
          sum([h.product(s.size()) for s in net.parameters()]))
    print("Depth (relu layers): ", net.depth())
    print()
    net.showNet()
    print()

if args.domain == []:
    models = [createModel(net, goals.Box(args.width), "Box") for net in nets]
else:
    models = h.flat([[
        createModel(net, h.parseValues(d, goals, scheduling), h.catStrs(d))
        for net in nets
    ] for d in args.domain])

patience = 30
last_best_origin = 0
best_origin = 1e10
last_best = 0
best = 1e10
decay = True
with h.mopen(args.dont_write, os.path.join(out_dir, "log.txt"), "w") as f:
    startTime = timer()
    for epoch in range(1, args.epochs + 1):
        if f is not None:
            f.flush()
        if (epoch - 1) % args.test_freq == 0 and (epoch > 1
                                                  or args.test_first):
Exemple #4
0
nets += [getattr(models, n) for n in args.net]

nets = [(n(num_classes).infer(input_dims), n) for n in nets]

for net, net_create in nets:
    print("Name: ", net_create.__name__)
    print("Number of Neurons (relus): ", net.neuronCount())
    print("Number of Parameters: ",
          sum([h.product(s.size()) for s in net.parameters()]))
    print()

if args.domain == []:
    models = [createModel(net, domains.Box, "Box") for net in nets]
else:
    models = h.flat(
        [[createModel(net, getattr(domains, d), d) for net in nets]
         for d in args.domain])


def adjust_learning_rate(optimizer, epoch):
    lr = args.lr
    if epoch >= 0.85 * args.epochs:
        lr = args.lr * 0.01
    elif epoch >= 0.7 * args.epochs:
        lr = args.lr * 0.1
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


with open(os.path.join(out_dir, "log.txt"), "w") as f:
Exemple #5
0
    m = getattr(models,n)
    net_create = (lambda m: lambda: buildNet(m))(m) # why doesn't python do scoping right?  This is a thunk.  It is bad.
    net_create.__name__ = n
    net = buildNet(m)
    net.__name__ = n
    nets += [ (net, net_create) ]

    print("Name: ", net_create.__name__)
    print("Number of Neurons (relus): ", net.neuronCount())
    print("Number of Parameters: ", sum([h.product(s.size()) for s in net.parameters()]))
    print()


if args.domain == []:
    models = [ createModel(net, domains.Box(args.width), "Box") for net in nets]
else:
    models = h.flat([[createModel(net, h.parseValues(domains,d), h.catStrs(d)) for net in nets] for d in args.domain])


with h.mopen(args.dont_write, os.path.join(out_dir, "log.txt"), "w") as f:
    startTime = timer()
    for epoch in range(1, args.epochs + 1):
        if (epoch - 1) % args.test_freq == 0:
            with Timer("test before epoch "+str(epoch),"sample", 10000):
                test(models, epoch, f)
        h.printBoth("Elapsed-Time: {:.2f}s\n".format(timer() - startTime), f = f)
        if args.epochs <= args.test_freq:
            break
        with Timer("train","sample", 60000):
            train(epoch, models)
Exemple #6
0
def receive_function_verbs_in_path(_path):
    return flat([extract_verbs_from_snake_case(function_name)
                 for function_name
                 in receive_function_names_in_path(_path)])