Exemple #1
0
                    help="use sgd instead of adam")
parser.add_argument('--onyx',
                    type=h.str2bool,
                    nargs='?',
                    const=True,
                    default=False,
                    help="should output onyx")
parser.add_argument('--save-dot-net',
                    type=h.str2bool,
                    nargs='?',
                    const=True,
                    default=False,
                    help="should output in .net")
parser.add_argument('--update-test-net-name',
                    type=str,
                    choices=h.getMethodNames(models),
                    default=None,
                    help="update test net name")

parser.add_argument(
    '--normalize-layer',
    type=h.str2bool,
    nargs='?',
    const=True,
    default=True,
    help="should include a training set specific normalization layer")
parser.add_argument(
    '--clip-norm',
    type=h.str2bool,
    nargs='?',
    const=True,
Exemple #2
0
    def printNet(self, f):
        self.net.printNet(f)

        
# Training settings
parser = argparse.ArgumentParser(description='PyTorch DiffAI Example',  formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=10, metavar='N', help='input batch size for training')
parser.add_argument('--test-freq', type=int, default=1, metavar='N', help='number of epochs to skip before testing')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N', help='input batch size for testing')
parser.add_argument('--sub-batch-size', type=int, default=3, metavar='N', help='input batch size for curve specs')

parser.add_argument('--test', type=str, default=None, metavar='net', help='Saved net to use, in addition to any other nets you specify with -n')
parser.add_argument('--update-test-net',type=h.str2bool, nargs='?', const=True, default=False, help="should update test net")
parser.add_argument('--onyx', type=h.str2bool, nargs='?', const=True, default=False, help="should output onyx")
parser.add_argument('--update-test-net-name', type=str, choices = h.getMethodNames(models), default=None, help="update test net name")

parser.add_argument('--epochs', type=int, default=1000, metavar='N', help='number of epochs to train')
parser.add_argument('--log-freq', type=int, default=10, metavar='N', help='The frequency with which log statistics are printed')
parser.add_argument('--save-freq', type=int, default=1, metavar='N', help='The frequency with which nets and images are saved')
parser.add_argument('--number-save-images', type=int, default=0, metavar='N', help='The number of images to save. Should be smaller than test-size.')

parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate')
parser.add_argument('--threshold', type=float, default=-0.01, metavar='TH', help='threshold for lr schedule')
parser.add_argument('--patience', type=int, default=0, metavar='PT', help='patience for lr schedule')
parser.add_argument('--factor', type=float, default=0.5, metavar='R', help='reduction multiplier for lr schedule')
parser.add_argument('--max-norm', type=float, default=10000, metavar='MN', help='the maximum norm allowed in weight distribution')

parser.add_argument('--curve-width', type=float, default=None, metavar='CW', help='the width of the curve spec')

parser.add_argument('--width-weight', type=float, default=0, metavar='CW', help='the weight of width in a combined loss')