def rf_lw152(num_classes, pretrained=False, **kwargs): model = ResNetLW(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, **kwargs) if pretrained: dataset = data_info.get(num_classes, None) if dataset: bname = '152_' + dataset.lower() key = 'rf_lw' + bname url = models_urls[bname] model.load_state_dict(maybe_download(key, url), strict=False) return model
def mbv2(num_classes, pretrained=False, **kwargs): """Constructs the network. Args: num_classes (int): the number of classes for the segmentation head to output. """ model = MBv2(num_classes, **kwargs) if pretrained: dataset = data_info.get(num_classes, None) if dataset: bname = 'mbv2_' + dataset.lower() key = 'rf_lw' + bname url = models_urls[bname] model.load_state_dict(maybe_download(key, url), strict=False) return model