def __init__(self, x_y, args): g_opt = hem.init_optimizer(args) d_opt = hem.init_optimizer(args) q_opt = hem.init_optimizer(args) x = hem.rescale(x_y[0], (0, 1), (-1, 1)) # 256x256x3 y = hem.rescale(x_y[1], (0, 1), (-1, 1)) # 256x256x1 z = tf.random_uniform((args.batch_size, 1, 256, 256)) # 256x256x1 with tf.variable_scope('generator') as scope: g = info_gan.generator(z, x) with tf.variable_scope('discriminator') as scope: d_real = info_gan.discriminator(y) d_fake = info_gan.discriminator(g, reuse=True) with tf.variable_scope('predictor') as scope: q = info_gan.predictor(g) g_loss = -tf.reduce_mean(tf.log(d_fake + 1e-8)) d_loss = -tf.reduce_mean(tf.log(d_real + 1e-8) + tf.log(1 - d_fake + 1e-8)) cross_entropy = tf.reduce_mean(-tf.reduce_sum(tf.log(q + 1e-8) * x), axis=1) entropy = tf.reduce_mean(-tf.reduce_sum(tf.log(x + 1e-8) * x), axis=1) q_loss = cross_entropy + entropy for l in [g_loss, d_loss, q_loss]: tf.add_to_collection('losses', l) self.all_losses = hem.collection_to_dict(tf.get_collection('losses')) g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') q_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'predictor') self.g_train_op = g_opt.minimize(g_loss, var_list=g_vars) self.d_train_op = d_opt.minimize(d_loss, var_list=d_vars) self.q_train_op = q_opt.minimize(q_loss, var_list=q_vars + g_vars)
def __init__(self, x_y, args): x_opt = hem.init_optimizer(args) y_opt = hem.init_optimizer(args) x_decoder_tower_grads = [] y_decoder_tower_grads = [] global_step = tf.train.get_global_step() for x_y, scope, gpu_id in hem.tower_scope_range( x_y, args.n_gpus, args.batch_size): x = hem.rescale(x_y[0], (0, 1), (-1, 1)) y = hem.rescale(x_y[1], (0, 1), (-1, 1)) with tf.variable_scope('encoder'): e = artist.encoder(x, reuse=gpu_id > 0) with tf.variable_scope('x_decoder'): x_hat = artist.decoder(e, args, channel_output=3, reuse=gpu_id > 0) with tf.variable_scope('y_decoder'): y_hat = artist.decoder(e, args, channel_output=1, reuse=gpu_id > 0) x_hat_loss, y_hat_loss = artist.losses(x, x_hat, y, y_hat, gpu_id == 0) encoder_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'encoder') x_decoder_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, 'x_decoder') y_decoder_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, 'y_decoder') # # train for x-reconstruction # x_decoder_tower_grads.append(x_opt.compute_gradients(x_hat_loss, var_list=encoder_vars + x_decoder_vars)) # y_decoder_tower_grads.append(y_opt.compute_gradients(y_hat_loss, var_list=y_decoder_vars)) # train for y-reconstruction x_decoder_tower_grads.append( x_opt.compute_gradients(x_hat_loss, var_list=x_decoder_vars)) y_decoder_tower_grads.append( y_opt.compute_gradients(y_hat_loss, var_list=encoder_vars + y_decoder_vars)) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) x_grads = hem.average_gradients(x_decoder_tower_grads) y_grads = hem.average_gradients(y_decoder_tower_grads) with tf.control_dependencies(batchnorm_updates): self.x_train_op = x_opt.apply_gradients(x_grads, global_step=global_step) self.y_train_op = y_opt.apply_gradients(y_grads, global_step=global_step) self.x_hat = x_hat self.y_hat = y_hat self.x_hat_loss = x_hat_loss self.y_hat_loss = y_hat_loss self.all_losses = hem.collection_to_dict(tf.get_collection('losses')) artist.summaries(x, y, x_hat, y_hat, x_grads, y_grads, args)
def cgan(x, args): """Create conditional GAN ('pix2pix') model on the graph. Args: x: Tensor, the real images. args: Argparse structure Returns: Function, the training function. Call for one iteration of training. """ # init/setup g_opt = hem.init_optimizer(args) d_opt = hem.init_optimizer(args) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() # rescale to [-1, 1] x = hem.rescale(x, (0, 1), (-1, 1)) for x, scope, gpu_id in hem.tower_scope_range(x, args.n_gpus, args.batch_size): # model x_rgb, x_depth = _split(x) # generator with tf.variable_scope('generator'): g = generator(x_rgb, args, reuse=(gpu_id > 0)) # discriminator with tf.variable_scope('discriminator'): d_real = discriminator(x, args, reuse=(gpu_id > 0)) d_fake = discriminator(g, args, reuse=True) # losses g_loss, d_loss = losses(x, g, d_fake, d_real, args, reuse=(gpu_id > 0)) # gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads) d_grads = hem.average_gradients(d_tower_grads) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries _summaries(g, x, args) hem.add_basic_summaries(g_grads + d_grads) # training return _train_cgan(g_apply_grads, d_apply_grads, batchnorm_updates)
def cnn(x, args): """Initialize a standard convolutional autoencoder. Args: x: Tensor, input tensor representing the images. args: Argparse struct. """ opt = hem.init_optimizer(args) tower_grads = [] x = hem.rescale(x, (0, 1), (-1, 1)) for x, scope, gpu_id in hem.tower_scope_range(x, args.n_gpus, args.batch_size): # create model with tf.variable_scope('encoder'): e = encoder(x, args, reuse=(gpu_id > 0)) with tf.variable_scope('latent'): z = latent(e, args, reuse=(gpu_id > 0)) with tf.variable_scope('decoder'): d = decoder(z, args, reuse=(gpu_id > 0)) with tf.variable_scope('loss'): d_loss = loss(x, d, reuse=(gpu_id > 0)) # compute gradients tower_grads.append(opt.compute_gradients(d_loss)) # training avg_grads = hem.average_gradients(tower_grads) train_op = opt.apply_gradients(avg_grads, global_step=tf.train.get_global_step()) train_func = hem.default_training(train_op) # add summaries summaries(x, d, avg_grads, args) return train_func
def vae(x, args): opt = hem.init_optimizer(args) tower_grads = [] for x, scope, gpu_id in hem.tower_scope_range(x, args.n_gpus, args.batch_size): # model with tf.variable_scope('encoder'): e = encoder(x, args, reuse=(gpu_id>0)) with tf.variable_scope('latent'): samples, z, z_mean, z_stddev = latent(e, args.batch_size, args.latent_size, reuse=(gpu_id>0)) with tf.variable_scope('decoder'): d_real = decoder(z, args, reuse=(gpu_id>0)) d_fake = decoder(samples, args, reuse=True) # losses d_loss, l_loss, t_loss = losses(x, z_mean, z_stddev, d_real) # gradients tower_grads.append(opt.compute_gradients(d_loss)) # summaries summaries(x, d_fake, d_real, args) # training avg_grads = hem.average_gradients(tower_grads) hem.summarize_gradients(avg_grads) train_op = opt.apply_gradients(avg_grads, global_step=tf.train.get_global_step()) return hem.default_training(train_op)
def __init__(self, x_y, args): # init/setup m_opt = hem.init_optimizer(args) m_tower_grads = [] global_step = tf.train.get_global_step() # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): # for i in range(len(x_y)): # print('estimator', i, x_y[i]) # x = x_y[0] # y = x_y[1] m_arch = {'E2': mean_depth_estimator.E2} x = x_y[4] x = tf.reshape(x, (-1, 3, 53, 70)) # print('estimator x shape', x) y = x_y[5] with tf.variable_scope('model'): m_func = m_arch[args.m_arch] m = m_func(x, args, reuse=(gpu_id>0)) self.output_layer = m # calculate losses m_loss = mean_depth_estimator.loss(m, x, y, args, reuse=(gpu_id > 0)) # calculate gradients m_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'model') m_tower_grads.append(m_opt.compute_gradients(m_loss, var_list=m_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # TODO: do we need to do this update for batchrenorm? for instance renorm? # average and apply gradients m_grads = hem.average_gradients(m_tower_grads, check_numerics=args.check_numerics) m_apply_grads = m_opt.apply_gradients(m_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(m_grads, name='m_gradients') hem.summarize_layers('m_activations', [l for l in tf.get_collection('conv_layers') if 'model' in l.name], montage=True) mean_depth_estimator.montage_summaries(x, y, m, args) # improved_sampler.montage_summarpies(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args) # improved_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args) # training ops with tf.control_dependencies(batchnorm_updates): self.m_train_op = m_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def __init__(self, x_y, estimator, args): # init/setup g_opt = hem.init_optimizer(args) d_opt = hem.init_optimizer(args) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() # sess = tf.Session(config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) # new_saver = tf.train.import_meta_graph( # '/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1/checkpoint-4.meta', import_scope='estimator') # new_saver.restore(sess, tf.train.latest_checkpoint('/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1')) # # # estimator_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) # # print('estimator_vars:', estimator_vars) # # # print('all ops!') # # for op in tf.get_default_graph().get_operations(): # # if 'l8' in str(op.name): # # print(str(op.name)) # # # # sess.graph # # graph = tf.get_default_graph() # estimator_tower0 = sess.graph.as_graph_element('estimator/tower_0/model/l8/add').outputs[0] # estimator_tower1 = sess.graph.as_graph_element('estimator/tower_1/model/l8/add').outputs[0] # self.estimator_placeholder = sess.graph.as_graph_element('estimator/input_pipeline/Placeholder') #.outputs[0] # print('PLACEHOLDER:', self.estimator_placeholder) # print('estimator_tower0:', estimator_tower0) # print('estimator_tower1:', estimator_tower1) # estimator_tower0 = tf.stop_gradient(estimator_tower0) # estimator_tower1 = tf.stop_gradient(estimator_tower1) # sess.close() # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = hem.rescale(x_y[0], (0, 1), (-1, 1)) y = hem.rescale(x_y[1], (0, 1), (-1, 1)) # if args.g_arch == 'E2': y = hem.crop_to_bounding_box(y, 16, 16, 32, 32) y = tf.reshape(y, (-1, 1, 32, 32)) x_loc = x_y[2] y_loc = x_y[3] scene_image = x_y[4] mean_depth = tf.stop_gradient(estimator.output_layer) # print('mean_depth_layer:', estimator.output_layer) # mean_depth = estimator(scene_image) # mean_depth = tf.expand_dims(mean_depth, axis=-1) # mean_depth = tf.expand_dims(mean_depth, axis=-1) mean_depth_channel = tf.stack([mean_depth] * 64, axis=2) mean_depth_channel = tf.stack([mean_depth_channel] * 64, axis=3) # mean_depth_channel = tf.squeeze(mean_depth_channel) # print('mean_depth_layer99:', mean_depth_channel) # mean_depth_channel = tf.ones_like(x_loc) * mean_depth # print('x', x) # print('x_loc', x_loc) # print('y_loc', y_loc) # print('mean_depth_channel', mean_depth_channel) x = tf.concat([x, x_loc, y_loc, mean_depth_channel], axis=1) # print('x shape:', x) # create repeated image tensors for sampling x_sample = tf.stack([x[0]] * args.batch_size) y_sample = tf.stack([y[0]] * args.batch_size) # shuffled x for variance calculation x_shuffled = tf.random_shuffle(x) y_shuffled = y # noise vector for testing x_noise = tf.random_uniform(tf.stack([tf.Dimension(args.batch_size), x.shape[1], x.shape[2], x.shape[3]]), minval=-1.0, maxval=1.0) g_arch = {'E2': experimental_sampler.generatorE2} d_arch = {'E2': experimental_sampler.discriminatorE2} # create model with tf.variable_scope('generator'): g_func = g_arch[args.g_arch] g = g_func(x, args, reuse=(gpu_id > 0)) g_sampler = g_func(x_sample, args, reuse=True) g_shuffle = g_func(x_shuffled, args, reuse=True) g_noise = g_func(x_noise, args, reuse=True) with tf.variable_scope('discriminator'): d_func = d_arch[args.d_arch] d_real, d_real_logits = d_func(x, y, args, reuse=(gpu_id > 0)) d_fake, d_fake_logits = d_func(x, g, args, reuse=True) # calculate losses g_loss, d_loss = experimental_sampler.loss(d_real, d_real_logits, d_fake, d_fake_logits, x, g, y, None, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # TODO: do we need to do this update for batchrenorm? for instance renorm? # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') hem.summarize_layers('g_activations', [l for l in tf.get_collection('conv_layers') if 'generator' in l.name], montage=True) hem.summarize_layers('d_activations', [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name], montage=True) experimental_sampler.montage_summaries(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args) experimental_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args) # training ops with tf.control_dependencies(batchnorm_updates): self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def gan(x, args): """Initialize model. Args: x: Tensor, the real images. args: Argparse structure. """ g_opt, d_opt = hem.init_optimizer(args), hem.init_optimizer(args) g_tower_grads, d_tower_grads = [], [] x = hem.flatten(x) x = 2 * (x - 0.5) # rescale [0,1] to [-1,1] depending on model # if args.model in ['wgan', 'iwgan']: # x = 2 * (x - 0.5) for x, scope, gpu_id in hem.tower_scope_range(x, args.n_gpus, args.batch_size): # model with tf.variable_scope('generator'): g = generator(args.batch_size, args.latent_size, args, reuse=(gpu_id > 0)) with tf.variable_scope('discriminator'): d_real = discriminator(x, args, reuse=(gpu_id > 0)) d_fake = discriminator(g, args, reuse=True) # losses g_loss, d_loss = losses(x, g, d_fake, d_real, args) # compute gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # summaries summaries(g, x, args) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads) d_grads = hem.average_gradients(d_tower_grads) hem.summarize_gradients(g_grads + d_grads) global_step = tf.train.get_global_step() g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # training if args.model == 'gan': train_func = _train_gan(g_apply_grads, d_apply_grads, batchnorm_updates) elif args.model == 'wgan': train_func = _train_wgan(g_apply_grads, g_params, d_apply_grads, d_params, batchnorm_updates) elif args.model == 'iwgan': train_func = _train_iwgan(g_apply_grads, d_apply_grads, batchnorm_updates) return train_func
def __init__(self, x_y, args): """Create conditional GAN ('pix2pix') model on the graph. Args: x: Tensor, the real images. args: Argparse structure Returns: Function, the training function. Call for one iteration of training. """ # init/setup g_opt = hem.init_optimizer(args) d_opt = hem.init_optimizer(args) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() # rescale to [-1, 1] # x_y = hem.rescale(x_y, (0, 1), (-1, 1)) # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): # split inputs and scale to [-1, 1] x = hem.rescale(x_y[0], (0, 1), (-1, 1)) y = hem.rescale(x_y[1], (0, 1), (-1, 1)) # x, y = tf.split(x_y, num_or_size_splits=[3, 1], axis=1) # repeated image tensor for sampling x_sample = tf.stack([x[0]] * args.examples) y_sample = tf.stack([y[0]] * args.examples) # create model with tf.variable_scope('generator'): g = pix2pix.generator(x, args, reuse=(gpu_id > 0)) g_sampler = pix2pix.generator(x_sample, args, reuse=True) with tf.variable_scope('discriminator'): d_real, d_real_logits = pix2pix.discriminator(x, y, args, reuse=(gpu_id > 0)) d_fake, d_fake_logits = pix2pix.discriminator(x, g, args, reuse=True) # losses g_loss, d_loss = pix2pix.loss(d_real, d_real_logits, d_fake, d_fake_logits, g, y, args, reuse=(gpu_id > 0)) # gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries pix2pix.montage_summaries(x, y, g, args, x_sample, y_sample, g_sampler, d_real, d_fake) pix2pix.activation_summaries() pix2pix.loss_summaries() pix2pix.gradient_summaries(g_grads, 'generator_gradients') pix2pix.gradient_summaries(d_grads, 'discriminator_gradients') pix2pix.sampler_summaries(y_sample, g_sampler, args) # training ops with tf.control_dependencies(batchnorm_updates): self.d_train_op = d_apply_grads self.g_train_op = g_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))