def test_diffuse_foreground_orientation(self): fqs = np.linspace(.1, .2, 100, endpoint=False) omega_p = noise.bm_poly_to_omega_p(fqs) lsts = np.linspace(0, 2 * np.pi, 1000) Tsky_mdl = noise.HERA_Tsky_mdl['xx'] bl_vec = (0, 30.0) vis = foregrounds.diffuse_foreground(lsts, fqs, bl_vec, Tsky_mdl=Tsky_mdl, fringe_filter_type='tophat', omega_p=omega_p) self.assertEqual(vis.shape, (lsts.size, fqs.size)) # assert foregrounds show up at positive fringe-rates for FFT bl_vec = (100.0, 0.0) vis = foregrounds.diffuse_foreground(lsts, fqs, bl_vec, Tsky_mdl=Tsky_mdl, fringe_filter_type='gauss', fr_width=1e-5, omega_p=omega_p) dfft = np.fft.fftshift(np.fft.fft( vis * dspec.gen_window('blackmanharris', len(vis))[:, None], axis=0), axes=0) frates = np.fft.fftshift( np.fft.fftfreq(len(lsts), np.diff(lsts)[0] * 12 * 3600 / np.pi)) max_frate = frates[np.argmax(np.abs(dfft[:, 0]))] nt.assert_true(max_frate > 0) bl_vec = (-100.0, 0.0) vis = foregrounds.diffuse_foreground(lsts, fqs, bl_vec, Tsky_mdl=Tsky_mdl, fringe_filter_type='gauss', fr_width=1e-5, omega_p=omega_p) dfft = np.fft.fftshift(np.fft.fft( vis * dspec.gen_window('blackmanharris', len(vis))[:, None], axis=0), axes=0) max_frate = frates[np.argmax(np.abs(dfft[:, 0]))] nt.assert_true(max_frate < 0)
def test_diffuse_foreground(self): fqs = np.linspace(.1, .2, 100, endpoint=False) lsts = np.linspace(0, 2 * np.pi, 1000) times = lsts / (2 * np.pi) * aipy.const.sidereal_day Tsky_mdl = noise.HERA_Tsky_mdl['xx'] #Tsky = Tsky_mdl(lsts,fqs) bl_len_ns = 30. vis = foregrounds.diffuse_foreground(lsts, fqs, [bl_len_ns, 0, 0], Tsky_mdl=Tsky_mdl, delay_filter_type='tophat', fringe_filter_type='tophat') self.assertEqual(vis.shape, (lsts.size, fqs.size)) # XXX check more substantial things #import uvtools, pylab as plt #uvtools.plot.waterfall(vis, mode='log'); plt.colorbar(); plt.show() nt.assert_raises(TypeError, foregrounds.diffuse_foreground, lsts, fqs, [bl_len_ns])
def setUp(self): # setup simulation parameters np.random.seed(0) fqs = np.linspace(0.1, 0.2, 100, endpoint=False) lsts = np.linspace(0, 2 * np.pi, 200) times = lsts / (2 * np.pi) * aipy.const.sidereal_day Tsky_mdl = noise.HERA_Tsky_mdl["xx"] Tsky = Tsky_mdl(lsts, fqs) bl_vec = np.array([50.0, 0, 0]) # + 20 is to boost k=0 mode vis = foregrounds.diffuse_foreground(lsts, fqs, bl_vec, Tsky_mdl=Tsky_mdl, delay_filter_type='gauss') + 20 self.freqs = fqs self.lsts = lsts self.Tsky = Tsky self.bl_vec = bl_vec self.vis = vis self.vfft = np.fft.fft(vis, axis=1) self.dlys = np.fft.fftfreq(len(fqs), d=np.median(np.diff(fqs)))
def generate_diffuse_foreground(self): #GENERATE FOREGROUNDS return foregrounds.diffuse_foreground( self.lsts, self.fqs, self.bl_len_ns_list, Tsky_mdl=self.Tsky_mdl) / 40
def gen_HERA_vis(self, tsamples, fsamples, bl_len_ns=400., add_rfi=False, inject_frb=False): #### Convert time samples to appropriate LST hours where 60 time samples = 10 min #### !!!! LST is in rads not hrs sph = 60. / .1667 lst_add = tsamples / sph fqs = np.linspace(.1, .2, fsamples, endpoint=False) lsts = np.linspace(np.pi / 2., np.pi / 2. + lst_add, tsamples) times = lsts / (2. * np.pi) * a.const.sidereal_day #### FOREGROUNDS #### # Diffuse Tsky_mdl = noise.HERA_Tsky_mdl['xx'] vis_fg_diffuse = foregrounds.diffuse_foreground( Tsky_mdl, lsts, fqs, bl_len_ns) # Point Sources vis_fg_pntsrc = foregrounds.pntsrc_foreground(lsts, fqs, bl_len_ns, nsrcs=1000) # FRBs vis_fg_frb = np.asarray(gen_simulated_frb(NFREQ=1024, NTIME=61, width=1., sim=True, delta_t=10., freq=(200, 100), FREQ_REF=150., fluence=(60., 600.), scintillate=True, dm=(300., 1800.))[0].T, dtype=np.complex128) vis_fg_frb *= np.exp( 1j * (lsts[30] + .1 * np.pi * np.random.randn(61, 1024))) # Combined if inject_frb: vis_fg = vis_fg_diffuse + vis_fg_pntsrc + vis_fg_frb else: vis_fg = vis_fg_diffuse + vis_fg_pntsrc #### Noise #### tsky = noise.resample_Tsky(fqs, lsts, Tsky_mdl=noise.HERA_Tsky_mdl['xx']) t_rx = 150. nos_jy = noise.sky_noise_jy(tsky + t_rx, fqs, lsts) # Add Noise vis_fg_nos = vis_fg + nos_jy #### RFI #### if add_rfi: g = sigchain.gen_gains(fqs, [1, 2, 3]) with open(add_rfi, 'r') as infile: RFIdict = yaml.load(infile) rfi = RFI_Sim(RFIdict) rfi.applyRFI() self.rfi_true = rfi.getFlags() vis_fg_nos_rfi = np.copy(vis_fg_nos) + rfi.getRFI() vis_total_rfi = sigchain.apply_gains(vis_fg_nos_rfi, g, (1, 2)) # add cross-talk xtalk = sigchain.gen_xtalk(np.linspace(.1, .2, 1024), amplitude=.001) vis_total_rfi = sigchain.apply_xtalk(vis_total_rfi, xtalk) self.data_rfi = vis_total_rfi else: g = sigchain.gen_gains(fqs, [1, 2, 3]) vis_total_norfi = sigchain.apply_gains(vis_fg_nos, g, (1, 2)) self.data = vis_total_norfi
fp.create_dataset('lsts', data=lsts) for a in ants: fp.create_dataset('g%d' % a, data=gains[a]) for bls in reds: for (i, j) in bls: data[(i, j)] = fp.create_dataset('%d-%d' % (i, j), (len(lsts), len(fqs)), chunks=True, dtype='complex64') for bls in reds: bl_len = get_distance(bls[0], antpos) bl_len_ns = bl_len / aipy.const.c * 1e11 vis_fg_pntsrc = foregrounds.pntsrc_foreground(lsts, fqs, bl_len_ns, nsrcs=200) vis_fg_diffuse = foregrounds.diffuse_foreground(Tsky_mdl, lsts, fqs, bl_len_ns) true_vis[bls[0]] = vis_fg_pntsrc + vis_fg_diffuse for (i, j) in bls: print(i, j) nos_jy = noise.sky_noise_jy(tsky + 150., fqs, lsts) vis_tot = nos_jy + true_vis[bls[0]] data[(i, j)][:, :] = sigchain.apply_gains(vis_tot, gains, (i, j)) fp.close()
def generate_diffuse_foreground(self): return foregrounds.diffuse_foreground( lsts, fqs, self.bl_len_ns, Tsky_mdl=Tsky_mdl) / 40