def neural_mf(user_input, item_input, y_, num_users, num_items): batch_size = 256 embed_dim = 8 layers = [64, 32, 16, 8] learning_rate = 0.01 User_Embedding = init.random_normal( (num_users, embed_dim + layers[0] // 2), stddev=0.01, name="user_embed", ctx=ndarray.cpu(0)) Item_Embedding = init.random_normal( (num_items, embed_dim + layers[0] // 2), stddev=0.01, name="item_embed", ctx=ndarray.cpu(0)) # MLP_User_Embedding = init.random_normal((num_users, layers[0] // 2), stddev=0.01, name="mlp_user_embed", ctx=ndarray.cpu(0)) # MLP_Item_Embedding = init.random_normal((num_items, layers[0] // 2), stddev=0.01, name="mlp_item_embed", ctx=ndarray.cpu(0)) user_latent = ad.embedding_lookup_op(User_Embedding, user_input, ctx=ndarray.cpu(0)) item_latent = ad.embedding_lookup_op(Item_Embedding, item_input, ctx=ndarray.cpu(0)) mf_user_latent = ad.slice_op(user_latent, (0, 0), (-1, embed_dim)) mlp_user_latent = ad.slice_op(user_latent, (0, embed_dim), (-1, -1)) mf_item_latent = ad.slice_op(item_latent, (0, 0), (-1, embed_dim)) mlp_item_latent = ad.slice_op(item_latent, (0, embed_dim), (-1, -1)) # mf_user_latent = ad.embedding_lookup_op(MF_User_Embedding, user_input, ctx=ndarray.cpu(0)) # mf_item_latent = ad.embedding_lookup_op(MF_Item_Embedding, item_input, ctx=ndarray.cpu(0)) # mlp_user_latent = ad.embedding_lookup_op(MLP_User_Embedding, user_input, ctx=ndarray.cpu(0)) # mlp_item_latent = ad.embedding_lookup_op(MLP_Item_Embedding, item_input, ctx=ndarray.cpu(0)) W1 = init.random_normal((layers[0], layers[1]), stddev=0.1, name='W1') W2 = init.random_normal((layers[1], layers[2]), stddev=0.1, name='W2') W3 = init.random_normal((layers[2], layers[3]), stddev=0.1, name='W3') W4 = init.random_normal((embed_dim + layers[3], 1), stddev=0.1, name='W4') mf_vector = ad.mul_op(mf_user_latent, mf_item_latent) mlp_vector = ad.concat_op(mlp_user_latent, mlp_item_latent, axis=1) fc1 = ad.matmul_op(mlp_vector, W1) relu1 = ad.relu_op(fc1) fc2 = ad.matmul_op(relu1, W2) relu2 = ad.relu_op(fc2) fc3 = ad.matmul_op(relu2, W3) relu3 = ad.relu_op(fc3) concat_vector = ad.concat_op(mf_vector, relu3, axis=1) y = ad.matmul_op(concat_vector, W4) y = ad.sigmoid_op(y) loss = ad.binarycrossentropy_op(y, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=learning_rate) # opt = optimizer.AdamOptimizer(learning_rate=learning_rate) train_op = opt.minimize(loss) return loss, y, train_op
def wdl_adult(X_deep, X_wide, y_): lr = 5 / 128 dim_wide = 809 dim_deep = 68 W = init.random_normal([dim_wide+20, 2], stddev=0.1, name="W") W1 = init.random_normal([dim_deep, 50], stddev=0.1, name="W1") b1 = init.random_normal([50], stddev=0.1, name="b1") W2 = init.random_normal([50, 20], stddev=0.1, name="W2") b2 = init.random_normal([20], stddev=0.1, name="b2") #deep Embedding = [] X_deep_input = None for i in range(8): Embedding_name = "Embedding_deep_" + str(i) Embedding.append(init.random_normal([50, 8], stddev=0.1, name=Embedding_name)) now = ad.embedding_lookup_op(Embedding[i], X_deep[i]) now = ad.array_reshape_op(now, (-1, 8)) if X_deep_input is None: X_deep_input = now else: X_deep_input = ad.concat_op(X_deep_input, now, 1) for i in range(4): now = ad.array_reshape_op(X_deep[i + 8], (-1, 1)) X_deep_input = ad.concat_op(X_deep_input, now, 1) mat1 = ad.matmul_op(X_deep_input, W1) add1 = mat1 + ad.broadcastto_op(b1, mat1) relu1= ad.relu_op(add1) dropout1 = relu1 #ad.dropout_op(relu1, 0.5) mat2 = ad.matmul_op(dropout1, W2) add2 = mat2 + ad.broadcastto_op(b2, mat2) relu2= ad.relu_op(add2) dropout2 = relu2 #ad.dropout_op(relu2, 0.5) dmodel=dropout2 # wide wmodel = ad.concat_op(X_wide, dmodel, 1) wmodel = ad.matmul_op(wmodel, W) prediction = wmodel loss = ad.softmaxcrossentropy_op(prediction, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=lr) train_op = opt.minimize(loss) return loss, prediction, y_, train_op
def dc_criteo(dense_input, sparse_input, y_): feature_dimension = 33762577 embedding_size = 8 learning_rate = 0.001 Embedding = init.random_normal([feature_dimension, embedding_size], stddev=0.01, name="snd_order_embedding") sparse_input = ad.embedding_lookup_op(Embedding, sparse_input) sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size)) ## dc_model x = ad.concat_op(sparse_input, dense_input, axis=1) input_dim = 26 * 8 + 13 hidden_dim = input_dim residual_out = build_residual_layers(x, input_dim, hidden_dim, num_layers=5) W4 = init.random_normal([26 * embedding_size + 13, 1], stddev=0.1, name="W4") y = ad.matmul_op(residual_out, W4) y = ad.sigmoid_op(y) loss = ad.binarycrossentropy_op(y, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=learning_rate) train_op = opt.minimize(loss) return loss, y, y_, train_op
def __call__(self, input, subgraph_size: list, use_sparse: list): """ Build the computation graph, return the output node split , in-graph message-passing, inter-graph message-passing , concat """ x = ad.matmul_op(input, self.weight) msg = x + ad.broadcastto_op(self.bias, x) output_nodes = [] msgs = [] split_at = 0 # message passing for each subgraph for i in range(self.npart): sliced_msg = ad.slice_op(node=msg, begin=(split_at, 0), size=(subgraph_size[i], self.out_features)) split_at += subgraph_size[i] msgs.append(sliced_msg) if use_sparse[i]: output = ad.csrmm_op(self.mp[i][i], sliced_msg) else: output = ad.matmul_op(self.mp[i][i], sliced_msg) output_nodes.append(output) # message passing between subgraphs for i in range(self.npart): for j in range(self.npart): if i == j: continue output_nodes[j] = output_nodes[j] + ad.csrmm_op( self.mp[i][j], msgs[i]) # concat all the remaining nodes result = output_nodes[0] for i in range(1, self.npart): result = ad.concat_op(result, output_nodes[i]) return result
def version_1(cls,node,tensor_dict,**kwargs): a = tensor_dict[node.input_tensor_names[0]] b = tensor_dict[node.input_tensor_names[1]] axis = node.get_attr_value('axis') y = ad.concat_op(a,b,axis=axis) tensor_dict[node.output_tensor_names[0]] = y return y
def rnn(x, y_): ''' RNN model, for MNIST dataset. Parameters: x: Variable(hetu.gpu_ops.Node.Node), shape (N, dims) y_: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes) Return: loss: Variable(hetu.gpu_ops.Node.Node), shape (1,) y: Variable(hetu.gpu_ops.Node.Node), shape (N, num_classes) ''' print("Building RNN model...") diminput = 28 dimhidden = 128 dimoutput = 10 nsteps = 28 weight1 = init.random_normal(shape=(diminput, dimhidden), stddev=0.1, name='rnn_weight1') bias1 = init.random_normal(shape=(dimhidden, ), stddev=0.1, name='rnn_bias1') weight2 = init.random_normal(shape=(dimhidden + dimhidden, dimhidden), stddev=0.1, name='rnn_weight2') bias2 = init.random_normal(shape=(dimhidden, ), stddev=0.1, name='rnn_bias2') weight3 = init.random_normal(shape=(dimhidden, dimoutput), stddev=0.1, name='rnn_weight3') bias3 = init.random_normal(shape=(dimoutput, ), stddev=0.1, name='rnn_bias3') last_state = ad.Variable(value=np.zeros((1, )).astype(np.float32), name='initial_state', trainable=False) for i in range(nsteps): cur_x = ad.slice_op(x, (0, i * diminput), (-1, diminput)) h = ad.matmul_op(cur_x, weight1) h = h + ad.broadcastto_op(bias1, h) if i == 0: last_state = ad.broadcastto_op(last_state, h) s = ad.concat_op(h, last_state, axis=1) s = ad.matmul_op(s, weight2) s = s + ad.broadcastto_op(bias2, s) last_state = ad.relu_op(s) final_state = last_state x = ad.matmul_op(final_state, weight3) y = x + ad.broadcastto_op(bias3, x) loss = ad.softmaxcrossentropy_op(y, y_) loss = ad.reduce_mean_op(loss, [0]) return loss, y
def dcn_criteo(dense_input, sparse_input, y_): feature_dimension = 33762577 embedding_size = 128 learning_rate = 0.003 Embedding = init.random_normal([feature_dimension, embedding_size], stddev=0.01, name="snd_order_embedding", ctx=ndarray.cpu(0)) sparse_input = ad.embedding_lookup_op(Embedding, sparse_input, ctx=ndarray.cpu(0)) sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size)) x = ad.concat_op(sparse_input, dense_input, axis=1) # Cross Network cross_output = build_cross_layer(x, num_layers=3) #DNN flatten = x W1 = init.random_normal([26 * embedding_size + 13, 256], stddev=0.01, name="W1") W2 = init.random_normal([256, 256], stddev=0.01, name="W2") W3 = init.random_normal([256, 256], stddev=0.01, name="W3") W4 = init.random_normal([256 + 26 * embedding_size + 13, 1], stddev=0.01, name="W4") fc1 = ad.matmul_op(flatten, W1) relu1 = ad.relu_op(fc1) fc2 = ad.matmul_op(relu1, W2) relu2 = ad.relu_op(fc2) y3 = ad.matmul_op(relu2, W3) y4 = ad.concat_op(cross_output, y3, axis=1) y = ad.matmul_op(y4, W4) y = ad.sigmoid_op(y) loss = ad.binarycrossentropy_op(y, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=learning_rate) train_op = opt.minimize(loss) return loss, y, y_, train_op
def test_Concat(): A = ad.Variable(name="A") B = ad.Variable(name="B") y = ad.concat_op(A, B, axis=1) executor = ad.Executor([y], ctx=ctx) A_val = rand.normal(scale=0.1, size=(2, 3)).astype(np.float32) B_val = rand.normal(scale=0.1, size=(2, 3)).astype(np.float32) res = executor.run(feed_dict={A: A_val, B: B_val}) Check(executor, res, [A, B], [y], [A_val, B_val]) print(sys._getframe().f_code.co_name, 'pass!')
def wdl_criteo(dense, sparse, labels): batch_size = 128 feature_dimension = 33762577 embedding_size = 128 learning_rate = 0.01 if isinstance(dense, tuple): dense_input = dl.dataloader_op([[dense[0], batch_size, 'train'], [dense[1], batch_size, 'validate']]) sparse_input = dl.dataloader_op([[sparse[0], batch_size, 'train'], [sparse[1], batch_size, 'validate']]) y_ = dl.dataloader_op([[labels[0], batch_size, 'train'], [labels[1], batch_size, 'validate']]) else: dense_input = dl.dataloader_op([[dense, batch_size, 'train']]) sparse_input = dl.dataloader_op([[sparse, batch_size, 'train']]) y_ = dl.dataloader_op([[labels, batch_size, 'train']]) print("Data loaded.") Embedding = init.random_normal([feature_dimension, embedding_size], stddev=0.01, name="snd_order_embedding", ctx=ndarray.cpu(0)) sparse_input = ad.embedding_lookup_op(Embedding, sparse_input, ctx=ndarray.cpu(0)) sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size)) #DNN flatten = dense_input W1 = init.random_normal([13, 256], stddev=0.01, name="W1") W2 = init.random_normal([256, 256], stddev=0.01, name="W2") W3 = init.random_normal([256, 256], stddev=0.01, name="W3") W4 = init.random_normal([256 + 26 * embedding_size, 1], stddev=0.01, name="W4") fc1 = ad.matmul_op(flatten, W1) relu1 = ad.relu_op(fc1) fc2 = ad.matmul_op(relu1, W2) relu2 = ad.relu_op(fc2) y3 = ad.matmul_op(relu2, W3) y4 = ad.concat_op(sparse_input, y3, axis=1) y = ad.matmul_op(y4, W4) y = ad.sigmoid_op(y) loss = ad.binarycrossentropy_op(y, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=learning_rate) train_op = opt.minimize(loss) return loss, y, y_, train_op
def get_token_embeddings(vocab_size, num_units, initializer=init.xavier_normal, zero_pad=True): if zero_pad: embedding_part = initializer(name='embedding_table', shape=(vocab_size - 1, num_units)) padding_zero = init.zeros(name='padding_zero', shape=(1, num_units), trainable=False) embeddings = ad.concat_op(padding_zero, embedding_part) else: embeddings = initializer(name='embedding_table', shape=(vocab_size, num_units)) return embeddings
def __call__(self, x): """ Build the computation graph, return the output node """ feat = x if self.dropout > 0: x = ad.dropout_op(x, 1 - self.dropout) x = ad.CuSparse.csrmm_op(self.mp, x) x = ad.matmul_op(x, self.weight) x = x + ad.broadcastto_op(self.bias, x) if self.activation == "relu": x = ad.relu_op(x) elif self.activation is not None: raise NotImplementedError return ad.concat_op(x, ad.matmul_op(feat, self.weight2), axis=1)
def dc_criteo(dense, sparse, labels): batch_size = 128 feature_dimension = 33762577 embedding_size = 8 learning_rate = 0.001 if isinstance(dense, tuple): dense_input = dl.dataloader_op([[dense[0], batch_size, 'train'], [dense[1], batch_size, 'validate']]) sparse_input = dl.dataloader_op([[sparse[0], batch_size, 'train'], [sparse[1], batch_size, 'validate']]) y_ = dl.dataloader_op([[labels[0], batch_size, 'train'], [labels[1], batch_size, 'validate']]) else: dense_input = dl.dataloader_op([[dense, batch_size, 'train']]) sparse_input = dl.dataloader_op([[sparse, batch_size, 'train']]) y_ = dl.dataloader_op([[labels, batch_size, 'train']]) print("Data loaded.") Embedding = init.random_normal([feature_dimension, embedding_size], stddev=0.01, name="snd_order_embedding") sparse_input = ad.embedding_lookup_op(Embedding, sparse_input) sparse_input = ad.array_reshape_op(sparse_input, (-1, 26 * embedding_size)) ## dc_model x = ad.concat_op(sparse_input, dense_input, axis=1) input_dim = 26 * 8 + 13 hidden_dim = input_dim residual_out = build_residual_layers(x, input_dim, hidden_dim, num_layers=5) W4 = init.random_normal([26 * embedding_size + 13, 1], stddev=0.1, name="W4") y = ad.matmul_op(residual_out, W4) y = ad.sigmoid_op(y) loss = ad.binarycrossentropy_op(y, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=learning_rate) train_op = opt.minimize(loss) return loss, y, y_, train_op
def wdl_adult(whatever): batch_size = 128 lr=5 dim_wide = 809 lr_ = lr / batch_size dim_deep = 68 from .load_data import load_adult_data x_train_deep, x_train_wide, y_train, x_test_deep, x_test_wide, y_test = load_adult_data() W = init.random_normal([dim_wide+20, 2], stddev=0.1, name="W") W1 = init.random_normal([dim_deep, 50], stddev=0.1, name="W1") b1 = init.random_normal([50], stddev=0.1, name="b1") W2 = init.random_normal([50, 20], stddev=0.1, name="W2") b2 = init.random_normal([20], stddev=0.1, name="b2") X_wide = dl.dataloader_op([ [x_train_wide, batch_size, 'train'], [x_test_wide, batch_size, 'validate'], ]) y_ = dl.dataloader_op([ [y_train, batch_size, 'train'], [y_test, batch_size, 'validate'], ]) #deep Embedding = [] X_deep = [] X_deep_input = None for i in range(8): X_deep_name = "x_deep_" + str(i) Embedding_name = "Embedding_deep_" + str(i) X_deep.append(dl.dataloader_op([ [x_train_deep[:,i], batch_size, 'train'], [x_test_deep[:,i], batch_size, 'validate'], ])) Embedding.append(init.random_normal([50, 8], stddev=0.1, name=Embedding_name)) now = ad.embedding_lookup_op(Embedding[i], X_deep[i]) now = ad.array_reshape_op(now, (-1, 8)) if X_deep_input is None: X_deep_input = now else: X_deep_input = ad.concat_op(X_deep_input, now, 1) for i in range(4): X_deep_name = "x_deep_" + str(8+i) X_deep.append(dl.dataloader_op([ [x_train_deep[:,8+i], batch_size, 'train'], [x_test_deep[:,8+i], batch_size, 'validate'], ])) now = ad.array_reshape_op(X_deep[i + 8], (batch_size, 1)) X_deep_input = ad.concat_op(X_deep_input, now, 1) mat1 = ad.matmul_op(X_deep_input, W1) add1 = mat1 + ad.broadcastto_op(b1, mat1) relu1= ad.relu_op(add1) dropout1 = relu1 #ad.dropout_op(relu1, 0.5) mat2 = ad.matmul_op(dropout1, W2) add2 = mat2 + ad.broadcastto_op(b2, mat2) relu2= ad.relu_op(add2) dropout2 = relu2 #ad.dropout_op(relu2, 0.5) dmodel=dropout2 # wide wmodel = ad.concat_op(X_wide, dmodel, 1) wmodel = ad.matmul_op(wmodel, W) prediction = wmodel loss = ad.softmaxcrossentropy_op(prediction, y_) loss = ad.reduce_mean_op(loss, [0]) opt = optimizer.SGDOptimizer(learning_rate=lr_) train_op = opt.minimize(loss) return loss, prediction, y_, train_op