Exemple #1
0
def agglomerative(ex):
    """
  @param ex: Explorer
  """
    row_names = []
    col_names = []

    people_with_cars = [i for i, x in enumerate(ex.people_capacity) if x > 0]
    people_without_cars = [
        i for i, x in enumerate(ex.people_capacity) if x == 0
    ]
    # initiate matrix with non-car people on rows and car people on columns
    first_i = -1
    distance_array = []
    assignments_dict = {}
    # initialize dictionary of assignments_dict
    #car_centroids = {}
    for car_person in people_with_cars:
        assignments_dict[car_person] = []
        #car_centroids[car_person] = ex.locations[car_person]
    #initialize matrix of distances between non-car people to car people
    for i in people_with_cars:
        person_dist = []
        row_names.append(i)
        if first_i == -1:
            first_i = i
        for j in people_without_cars:
            if (i == first_i):
                col_names.append(j)
            person_dist.append(ex.distances[i][j]['weight'])
        distance_array.append(person_dist)
    distance_matrix = np.matrix(distance_array)
    if ex.verbose:
        print "distance_matrix"
        print distance_matrix

    # while there is an unassigned non-car person, assign the person with minimum distance to a car with space. Then recenter the location of that car.
    while len(col_names) > 0:
        min_row = np.unravel_index(np.argmin(distance_matrix),
                                   np.shape(distance_matrix))[0]
        min_col = np.unravel_index(np.argmin(distance_matrix),
                                   np.shape(distance_matrix))[1]
        min_car = row_names[min_row]
        assignments_dict[min_car].append(col_names[min_col])
        distance_matrix = np.delete(distance_matrix, min_col, 1)
        del col_names[min_col]
        if len(assignments_dict[min_car]) >= (ex.people_capacity[min_car] - 1):
            distance_matrix = np.delete(distance_matrix, min_row, 0)
            del row_names[min_row]
        #change the location of the car to be centroid of all people assigned to it and recompute distances for that row
        else:
            centroid_x, centroid_y = ex.locations[min_car]
            for person in assignments_dict[min_car]:
                centroid_x += ex.locations[person][0]
                centroid_y += ex.locations[person][1]
            centroid_x = centroid_x / (len(assignments_dict[min_car]) + 1)
            centroid_y = centroid_y / (len(assignments_dict[min_car]) + 1)
            new_row_dist = []
            for person in col_names:
                new_row_dist.append(
                    ((ex.locations[person][0] - centroid_x)**2 +
                     (ex.locations[person][1] - centroid_y)**2)**0.5)
            distance_matrix[min_row] = new_row_dist
    total_cost = 0.0
    assignment = [None] * ex.num_people
    for driver in filter(lambda p: ex.people_capacity[p] > 0,
                         range(ex.num_people)):
        if assignments_dict[driver] == []:
            assignment[driver] = []
        total_cost += heuristics.pickup_cost(ex, driver,
                                             assignments_dict[driver])[0]
        assignment[driver] = heuristics.pickup_cost(
            ex, driver, assignments_dict[driver])[1]
    return (total_cost, assignment)
Exemple #2
0
def agglomerative(ex):
    """
  @param ex: Explorer
  """
    row_names = []
    col_names = []

    people_with_cars = [i for i, x in enumerate(ex.people_capacity) if x > 0]
    people_without_cars = [i for i, x in enumerate(ex.people_capacity) if x == 0]
    # initiate matrix with non-car people on rows and car people on columns
    first_i = -1
    distance_array = []
    assignments_dict = {}
    # initialize dictionary of assignments_dict
    # car_centroids = {}
    for car_person in people_with_cars:
        assignments_dict[car_person] = []
        # car_centroids[car_person] = ex.locations[car_person]
    # initialize matrix of distances between non-car people to car people
    for i in people_with_cars:
        person_dist = []
        row_names.append(i)
        if first_i == -1:
            first_i = i
        for j in people_without_cars:
            if i == first_i:
                col_names.append(j)
            person_dist.append(ex.distances[i][j]["weight"])
        distance_array.append(person_dist)
    distance_matrix = np.matrix(distance_array)
    if ex.verbose:
        print "distance_matrix"
        print distance_matrix

    # while there is an unassigned non-car person, assign the person with minimum distance to a car with space. Then recenter the location of that car.
    while len(col_names) > 0:
        min_row = np.unravel_index(np.argmin(distance_matrix), np.shape(distance_matrix))[0]
        min_col = np.unravel_index(np.argmin(distance_matrix), np.shape(distance_matrix))[1]
        min_car = row_names[min_row]
        assignments_dict[min_car].append(col_names[min_col])
        distance_matrix = np.delete(distance_matrix, min_col, 1)
        del col_names[min_col]
        if len(assignments_dict[min_car]) >= (ex.people_capacity[min_car] - 1):
            distance_matrix = np.delete(distance_matrix, min_row, 0)
            del row_names[min_row]
        # change the location of the car to be centroid of all people assigned to it and recompute distances for that row
        else:
            centroid_x, centroid_y = ex.locations[min_car]
            for person in assignments_dict[min_car]:
                centroid_x += ex.locations[person][0]
                centroid_y += ex.locations[person][1]
            centroid_x = centroid_x / (len(assignments_dict[min_car]) + 1)
            centroid_y = centroid_y / (len(assignments_dict[min_car]) + 1)
            new_row_dist = []
            for person in col_names:
                new_row_dist.append(
                    ((ex.locations[person][0] - centroid_x) ** 2 + (ex.locations[person][1] - centroid_y) ** 2) ** 0.5
                )
            distance_matrix[min_row] = new_row_dist
    total_cost = 0.0
    assignment = [None] * ex.num_people
    for driver in filter(lambda p: ex.people_capacity[p] > 0, range(ex.num_people)):
        if assignments_dict[driver] == []:
            assignment[driver] = []
        total_cost += heuristics.pickup_cost(ex, driver, assignments_dict[driver])[0]
        assignment[driver] = heuristics.pickup_cost(ex, driver, assignments_dict[driver])[1]
    return (total_cost, assignment)
Exemple #3
0
def kNearestDistance(ex):
    """
  @param ex: Explorer
  Algorithm based on projection distance
  """
    ### pick up passengers on the way ###
    # create matrix (passenger x driver)
    #projection_matrix = heuristics.get_passenger_driver_projection_matrix_ver2(ex, range(ex.num_people))
    projection_matrix = heuristics.get_passenger_driver_distance_matrix(
        ex, range(ex.num_people))
    index_matrix = heuristics.get_passenger_driver_index_matrix(
        ex, range(ex.num_people))

    if ex.verbose:
        print projection_matrix
        print index_matrix

    # for each global minimum projection, assign passenger to the car
    # remove passenger row
    # once the car is filled, remove car column
    assignment = [None] * ex.num_people
    while np.size(projection_matrix) > 0 and not np.isnan(
            np.nanmin(projection_matrix)):

        (num_unassign_passengers, num_avail_cars) = projection_matrix.shape
        min_index = np.nanargmin(projection_matrix)
        min_index_0 = min_index / num_avail_cars
        min_index_1 = min_index % num_avail_cars
        (min_passenger_idx,
         min_car_idx) = index_matrix[min_index_0][min_index_1]

        if ex.verbose:
            print projection_matrix
            print 'min: %s at (%s, %s)' % (str(np.nanmin(projection_matrix)),
                                           str(min_index_0), str(min_index_1))

        # assign min passenger to min car
        list_min_car_passengers = assignment[min_car_idx]
        if (list_min_car_passengers == None):
            list_min_car_passengers = []
        list_min_car_passengers.append(min_passenger_idx)
        if len(list_min_car_passengers) <= ex.people_capacity[min_car_idx] - 1:
            assignment[min_car_idx] = list_min_car_passengers
            if ex.verbose:
                print 'assign passenger %s to driver %s' % (
                    str(min_passenger_idx), str(min_car_idx))

        # remove car column if car is full after taking this passenger
        if (len(list_min_car_passengers) == ex.people_capacity[min_car_idx] -
                1):
            projection_matrix = np.delete(projection_matrix,
                                          min_index_1,
                                          axis=1)
            index_matrix = np.delete(index_matrix, min_index_1, axis=1)

        # remove passenger
        projection_matrix = np.delete(projection_matrix, min_index_0, axis=0)
        index_matrix = np.delete(index_matrix, min_index_0, axis=0)

    ### for remaining passengers, assign to closest driver ###
    if np.size(projection_matrix) > 0:

        # get a list of people indices
        list_index_matrix = index_matrix.tolist()
        list_index_cars = [tuple[1] for tuple in list_index_matrix[0]]
        list_index_passengers = []
        for list_index in list_index_matrix:
            list_index_passengers.append(list_index[0][0])
        list_people = list_index_cars + list_index_passengers

        # get distance and index matrices
        distance_matrix = heuristics.get_passenger_driver_distance_matrix(
            ex, list_people)
        index_matrix = heuristics.get_passenger_driver_index_matrix(
            ex, list_people)

        # for each global minimum distance, assign passenger to car
        while np.size(distance_matrix) > 0 and not np.isnan(
                np.nanmin(distance_matrix)):

            (num_unassign_passengers, num_avail_cars) = distance_matrix.shape
            min_index = np.nanargmin(distance_matrix)
            min_index_0 = min_index / num_avail_cars
            min_index_1 = min_index % num_avail_cars
            (min_passenger_idx,
             min_car_idx) = index_matrix[min_index_0][min_index_1]

            # assign min passenger to min car
            list_min_car_passengers = assignment[min_car_idx]
            if (list_min_car_passengers == None):
                list_min_car_passengers = []
            list_min_car_passengers.append(min_passenger_idx)
            if len(list_min_car_passengers
                   ) <= ex.people_capacity[min_car_idx] - 1:
                assignment[min_car_idx] = list_min_car_passengers

            # remove car column if car is full after taking this passenger
            if (len(list_min_car_passengers) == ex.people_capacity[min_car_idx]
                    - 1):
                distance_matrix = np.delete(distance_matrix,
                                            min_index_1,
                                            axis=1)
                index_matrix = np.delete(index_matrix, min_index_1, axis=1)

            # remove passenger
            distance_matrix = np.delete(distance_matrix, min_index_0, axis=0)
            index_matrix = np.delete(index_matrix, min_index_0, axis=0)

    if ex.verbose:
        print 'assignment:'
        print assignment

    # calculate cost
    total_cost = 0.0
    for driver in filter(lambda p: ex.people_capacity[p] > 0,
                         range(ex.num_people)):
        if assignment[driver] == None:
            assignment[driver] = []
        total_cost += heuristics.pickup_cost(ex, driver, assignment[driver])[0]
        assignment[driver] = heuristics.pickup_cost(ex, driver,
                                                    assignment[driver])[1]

    return (total_cost, assignment)
Exemple #4
0
def kNearestDistance(ex):
    """
  @param ex: Explorer
  Algorithm based on projection distance
  """
    ### pick up passengers on the way ###
    # create matrix (passenger x driver)
    # projection_matrix = heuristics.get_passenger_driver_projection_matrix_ver2(ex, range(ex.num_people))
    projection_matrix = heuristics.get_passenger_driver_distance_matrix(ex, range(ex.num_people))
    index_matrix = heuristics.get_passenger_driver_index_matrix(ex, range(ex.num_people))

    if ex.verbose:
        print projection_matrix
        print index_matrix

    # for each global minimum projection, assign passenger to the car
    # remove passenger row
    # once the car is filled, remove car column
    assignment = [None] * ex.num_people
    while np.size(projection_matrix) > 0 and not np.isnan(np.nanmin(projection_matrix)):

        (num_unassign_passengers, num_avail_cars) = projection_matrix.shape
        min_index = np.nanargmin(projection_matrix)
        min_index_0 = min_index / num_avail_cars
        min_index_1 = min_index % num_avail_cars
        (min_passenger_idx, min_car_idx) = index_matrix[min_index_0][min_index_1]

        if ex.verbose:
            print projection_matrix
            print "min: %s at (%s, %s)" % (str(np.nanmin(projection_matrix)), str(min_index_0), str(min_index_1))

        # assign min passenger to min car
        list_min_car_passengers = assignment[min_car_idx]
        if list_min_car_passengers == None:
            list_min_car_passengers = []
        list_min_car_passengers.append(min_passenger_idx)
        if len(list_min_car_passengers) <= ex.people_capacity[min_car_idx] - 1:
            assignment[min_car_idx] = list_min_car_passengers
            if ex.verbose:
                print "assign passenger %s to driver %s" % (str(min_passenger_idx), str(min_car_idx))

        # remove car column if car is full after taking this passenger
        if len(list_min_car_passengers) == ex.people_capacity[min_car_idx] - 1:
            projection_matrix = np.delete(projection_matrix, min_index_1, axis=1)
            index_matrix = np.delete(index_matrix, min_index_1, axis=1)

        # remove passenger
        projection_matrix = np.delete(projection_matrix, min_index_0, axis=0)
        index_matrix = np.delete(index_matrix, min_index_0, axis=0)

    ### for remaining passengers, assign to closest driver ###
    if np.size(projection_matrix) > 0:

        # get a list of people indices
        list_index_matrix = index_matrix.tolist()
        list_index_cars = [tuple[1] for tuple in list_index_matrix[0]]
        list_index_passengers = []
        for list_index in list_index_matrix:
            list_index_passengers.append(list_index[0][0])
        list_people = list_index_cars + list_index_passengers

        # get distance and index matrices
        distance_matrix = heuristics.get_passenger_driver_distance_matrix(ex, list_people)
        index_matrix = heuristics.get_passenger_driver_index_matrix(ex, list_people)

        # for each global minimum distance, assign passenger to car
        while np.size(distance_matrix) > 0 and not np.isnan(np.nanmin(distance_matrix)):

            (num_unassign_passengers, num_avail_cars) = distance_matrix.shape
            min_index = np.nanargmin(distance_matrix)
            min_index_0 = min_index / num_avail_cars
            min_index_1 = min_index % num_avail_cars
            (min_passenger_idx, min_car_idx) = index_matrix[min_index_0][min_index_1]

            # assign min passenger to min car
            list_min_car_passengers = assignment[min_car_idx]
            if list_min_car_passengers == None:
                list_min_car_passengers = []
            list_min_car_passengers.append(min_passenger_idx)
            if len(list_min_car_passengers) <= ex.people_capacity[min_car_idx] - 1:
                assignment[min_car_idx] = list_min_car_passengers

            # remove car column if car is full after taking this passenger
            if len(list_min_car_passengers) == ex.people_capacity[min_car_idx] - 1:
                distance_matrix = np.delete(distance_matrix, min_index_1, axis=1)
                index_matrix = np.delete(index_matrix, min_index_1, axis=1)

            # remove passenger
            distance_matrix = np.delete(distance_matrix, min_index_0, axis=0)
            index_matrix = np.delete(index_matrix, min_index_0, axis=0)

    if ex.verbose:
        print "assignment:"
        print assignment

    # calculate cost
    total_cost = 0.0
    for driver in filter(lambda p: ex.people_capacity[p] > 0, range(ex.num_people)):
        if assignment[driver] == None:
            assignment[driver] = []
        total_cost += heuristics.pickup_cost(ex, driver, assignment[driver])[0]
        assignment[driver] = heuristics.pickup_cost(ex, driver, assignment[driver])[1]

    return (total_cost, assignment)