def __init__(self, sim): """ Initialize the counter collection. :param sim: the simulation, the CounterCollection belongs to. """ self.sim = sim # waiting time self.cnt_wt = TimeIndependentCounter(name="waiting time") self.hist_wt = TimeIndependentHistogram(self.sim, "w") self.acnt_wt = TimeIndependentAutocorrelationCounter( "waiting time with lags 1 to 20", max_lag=20) # queue length self.cnt_ql = TimeDependentCounter(self.sim, name="queue length") self.hist_ql = TimeDependentHistogram(self.sim, "q") # system utilization self.cnt_sys_util = TimeDependentCounter(self.sim, name="system utilization") # blocking probability self.cnt_bp = TimeIndependentCounter("bp") self.hist_bp = TimeIndependentHistogram(self.sim, "bp") # cross correlations self.cnt_iat_wt = TimeIndependentCrosscorrelationCounter( "inter-arrival time vs. waiting time") self.cnt_iat_st = TimeIndependentCrosscorrelationCounter( "inter-arrival time vs. service time") self.cnt_iat_syst = TimeIndependentCrosscorrelationCounter( "inter-arrival time vs. system time") self.cnt_st_syst = TimeIndependentCrosscorrelationCounter( "service time vs. system time")
def __init__(self, sim): """ Initialize the counter collection. :param sim: the simulation, the CounterCollection belongs to. """ self.sim = sim # waiting time self.cnt_wt = TimeIndependentCounter() self.hist_wt = TimeIndependentHistogram(self.sim, "w") # queue length self.cnt_ql = TimeDependentCounter(self.sim) self.hist_ql = TimeDependentHistogram(self.sim, "q") # system utilization self.cnt_sys_util = TimeDependentCounter(self.sim) """
def __init__(self, server): """ Initialize the counter collection. :param sim: the simulation, the CounterCollection belongs to. """ self.server = server #self.sim = server.slicesim # waiting time #self.cnt_wt = TimeIndependentCounter(self.server) #self.hist_wt = TimeIndependentHistogram(self.server, "w") #self.acnt_wt = TimeIndependentAutocorrelationCounter("waiting time with lags 1 to 20", max_lag=20) # system time(delay) self.cnt_syst = TimeIndependentCounter(self.server) self.hist_syst = TimeIndependentHistogram(self.server, "s") # queue length self.cnt_ql = TimeDependentCounter(self.server) self.hist_ql = TimeDependentHistogram(self.server, "q") # throughput self.cnt_tp = TimeDependentCounter(self.server, 'tp') self.cnt_tp2 = TimeDependentCounter(self.server, 'tp2')
def task_3_2_1(): """ This function plots two histograms for verification of the random distributions. One histogram is plotted for a uniform distribution, the other one for an exponential distribution. """ # TODO Task 3.2.1: Your code goes here sim_param = SimParam() random.seed(sim_param.SEED) sim_param.RHO = 0.01 sim = Simulation(sim_param) rns_iat = ExponentialRNS(1.0) rns_st = ExponentialRNS(1.0/sim.sim_param.RHO) rns_uniform = UniformRNS((2,4)) hist1 = TimeIndependentHistogram(sim, "Line") hist2 = TimeIndependentHistogram(sim, "Line") hist3 = TimeIndependentHistogram(sim, "bp") for i in range(1000000): hist1.count(rns_iat.next()) hist2.count(rns_st.next()) hist3.count(rns_uniform.next()) hist1.report() hist2.report() hist3.report()
class CounterCollection(object): """ CounterCollection is a collection of all counters and histograms that are used in the simulations. It contains several counters and histograms, that are used in the different tasks. Reporting is done by calling the report function. This function can be adapted, depending on which counters should report their results and print strings or plot histograms. """ def __init__(self, sim): """ Initialize the counter collection. :param sim: the simulation, the CounterCollection belongs to. """ self.sim = sim # waiting time self.cnt_wt = TimeIndependentCounter() self.hist_wt = TimeIndependentHistogram(self.sim, "w") # queue length self.cnt_ql = TimeDependentCounter(self.sim) self.hist_ql = TimeDependentHistogram(self.sim, "q") # system utilization self.cnt_sys_util = TimeDependentCounter(self.sim) """ # blocking probability self.cnt_bp = TimeIndependentCounter("bp") self.hist_bp = TimeIndependentHistogram(self.sim, "bp") # correlations self.cnt_iat_wt = TimeIndependentCrosscorrelationCounter("inter-arrival time vs. waiting time") self.cnt_iat_st = TimeIndependentCrosscorrelationCounter("inter-arrival time vs. service time") self.cnt_iat_syst = TimeIndependentCrosscorrelationCounter("inter-arrival time vs. system time") self.cnt_st_syst = TimeIndependentCrosscorrelationCounter("service time vs. system time") self.acnt_wt = TimeIndependentAutocorrelationCounter("waiting time with lags 1 to 20", max_lag=20) """ def reset(self): """ Resets all counters and histograms. """ self.cnt_wt.reset() self.hist_wt.reset() self.cnt_ql.reset() self.hist_ql.reset() self.cnt_sys_util.reset() """ self.cnt_bp.reset() self.hist_bp.reset() self.cnt_iat_wt.reset() self.cnt_iat_st.reset() self.cnt_iat_syst.reset() self.cnt_st_syst.reset() self.acnt_wt.reset() """ def report(self): """ Calls the report function of the counters and histograms. Can be adapted, such that not all reports are printed """ self.cnt_wt.report() self.hist_wt.report() self.cnt_ql.report() self.hist_ql.report() self.cnt_sys_util.report() """ self.cnt_iat_wt.report() self.cnt_iat_st.report() self.cnt_iat_syst.report() self.cnt_st_syst.report() self.acnt_wt.report() """ def count_packet(self, packet): """ Count a packet. Its data is counted by the various counters """ self.cnt_wt.count(packet.get_waiting_time()) self.hist_wt.count(packet.get_waiting_time()) """ self.cnt_iat_wt.count(packet.get_interarrival_time(), packet.get_waiting_time()) self.cnt_iat_st.count(packet.get_interarrival_time(), packet.get_service_time()) self.cnt_iat_syst.count(packet.get_interarrival_time(), packet.get_system_time()) self.cnt_st_syst.count(packet.get_service_time(), packet.get_system_time()) self.acnt_wt.count(packet.get_waiting_time()) """ def count_queue(self): """ Count the number of packets in the buffer and add the values to the corresponding (time dependent) histogram. This function should be called at least whenever the number of packets in the buffer changes. The system utilization is counted as well and can be counted from the counter cnt_sys_util. """ self.cnt_ql.count(self.sim.system_state.get_queue_length()) self.hist_ql.count(self.sim.system_state.get_queue_length()) # TODO Task 2.5.1: Your code goes here if self.sim.system_state.server_busy: self.cnt_sys_util.count(1) else: self.cnt_sys_util.count(0)
def do_simulation_study(sim, print_queue_length=False, print_waiting_time=True): """ This simulation study is different from the one made in assignment 1. It is mainly used to gather and visualize statistics for different buffer sizes S instead of finding a minimal number of spaces for a desired quality. For every buffer size S (which ranges from 5 to 7), statistics are printed (depending on the input parameters). Finally, after all runs, the results are plotted in order to visualize the differences and giving the ability to compare them. The simulations are run first for 100s, then for 1000s. For each simulation time, two diagrams are shown: one for the distribution of the mean waiting times and one for the average buffer usage :param sim: the simulation object to do the simulation :param print_queue_length: print the statistics for the queue length to the console :param print_waiting_time: print the statistics for the waiting time to the console """ # TODO Task 2.7.1: Your code goes here # TODO Task 2.7.2: Your code goes here hist_wt = TimeIndependentHistogram( sim, "w") #w is used to draw mean waiting time. # I can also create a variable from TimeIndependentHistogram class to use its plotting methods, # even if the queue length is depend on the time dependent system. Because I have already take this account for # calculation of its mean. Now, I have an array with the mean queue values for each run. Then, I can plot side by side # using the method of TimeIndependentHistogram. hist_ql = TimeIndependentHistogram(sim, "q") for i in range(sim.sim_param.S_VALUES[0], sim.sim_param.S_VALUES[-1] + 1): mean_queue_length = [] mean_waiting_times = [] sim.counter_collection.cnt_ql.reset() sim.counter_collection.cnt_wt.reset() hist_wt.reset() hist_ql.reset() sim.sim_param.S = i for sim_run in range(sim.sim_param.NO_OF_RUNS): sim.reset() mean_queue_length.append(sim.do_simulation().mean_queue_length) mean_waiting_times.append(sim.do_simulation().mean_waiting_time) if print_waiting_time: print("Queue Size = " + str(i) + " Number of Runs = " + str(sim.sim_param.NO_OF_RUNS) + " Sim.Time = " + str(sim.sim_param.SIM_TIME) + "ms" + " Mean waiting times = " + str(numpy.mean(mean_waiting_times)) + " Mean Queue Length = " + str(numpy.mean((mean_queue_length))) + " Variance = " + str(numpy.var(mean_waiting_times))) #if print_queue_length: # print ("Queue Size = " + str(i) + " Number of Runs = " + str(sim.sim_param.NO_OF_RUNS) + " Sim.Time = " + str(sim.sim_param.SIM_TIME) + "ms" + " Mean Queue Length = " + str(numpy.mean(mean_queue_length)) + " Mean Queue Length = " + str(numpy.mean((mean_queue_length)))) hist_ql.values = mean_queue_length hist_wt.values = mean_waiting_times plt.subplot(121) plt.xlabel("Mean Waiting Time[ms] Sim.Time = " + str(sim.sim_param.SIM_TIME) + "ms") plt.ylabel("Probability Distribution") hist_wt.report() plt.subplot(122) plt.xlabel("Mean Queue Length Sim.Time = " + str(sim.sim_param.SIM_TIME) + "ms") plt.ylabel("Probability Distribution") hist_ql.report() plt.show()
def do_simulation_study(sim, print_queue_length=False, print_waiting_time=True): """ This simulation study is different from the one made in assignment 1. It is mainly used to gather and visualize statistics for different buffer sizes S instead of finding a minimal number of spaces for a desired quality. For every buffer size S (which ranges from 5 to 7), statistics are printed (depending on the input parameters). Finally, after all runs, the results are plotted in order to visualize the differences and giving the ability to compare them. The simulations are run first for 100s, then for 1000s. For each simulation time, two diagrams are shown: one for the distribution of the mean waiting times and one for the average buffer usage :param sim: the simulation object to do the simulation :param print_queue_length: print the statistics for the queue length to the console :param print_waiting_time: print the statistics for the waiting time to the console """ # counters for mean queue length and waiting time counter_mean_queue_length = TimeIndependentCounter() hist_mean_queue_length = TimeIndependentHistogram(sim, "q") counter_mean_waiting_time = TimeIndependentCounter() hist_mean_waiting_time = TimeIndependentHistogram(sim, "w") # step through number of buffer spaces... for S in sim.sim_param.S_VALUES: sim.sim_param.S = S counter_mean_queue_length.reset() hist_mean_queue_length.reset() counter_mean_waiting_time.reset() hist_mean_waiting_time.reset() sim.sim_param.SIM_TIME = 100000 sim.sim_param.NO_OF_RUNS = 1000 # repeat simulation for run in range(sim.sim_param.NO_OF_RUNS): # print(run) sim.reset() sim.do_simulation() # add simulation result to counters and histograms (always use the mean) counter_mean_queue_length.count( sim.counter_collection.cnt_ql.get_mean()) hist_mean_queue_length.count( sim.counter_collection.cnt_ql.get_mean()) counter_mean_waiting_time.count( sim.counter_collection.cnt_wt.get_mean()) hist_mean_waiting_time.count( sim.counter_collection.cnt_wt.get_mean()) pyplot.subplot(221) pyplot.xlabel("Mean waiting time [ms] (SIM_TIME = 100.000ms)") pyplot.ylabel("Distribution over n") hist_mean_waiting_time.report() pyplot.subplot(222) pyplot.xlabel("Mean queue length (SIM_TIME = 100.000ms)") pyplot.ylabel("Distribution over n") hist_mean_queue_length.report() # if desired, print statistics for queue length and waiting time if print_queue_length: print('Buffer size: ' + str(sim.sim_param.S) + ', simulation time: ' + str(sim.sim_param.SIM_TIME) + ', Mean buffer content: ' + str(counter_mean_queue_length.get_mean()) + ' Variance: ' + str(counter_mean_queue_length.get_var())) if print_waiting_time: print('Buffer size: ' + str(sim.sim_param.S) + ', simulation time: ' + str(sim.sim_param.SIM_TIME) + ', Mean waiting time: ' + str(counter_mean_waiting_time.get_mean()) + ' Variance: ' + str(counter_mean_waiting_time.get_var())) counter_mean_queue_length.reset() hist_mean_queue_length.reset() counter_mean_waiting_time.reset() hist_mean_waiting_time.reset() sim.sim_param.SIM_TIME = 1000000 sim.sim_param.NO_OF_RUNS = 1000 # repeat simulation for run in range(sim.sim_param.NO_OF_RUNS): # print(run) sim.reset() sim.do_simulation() # add simulation result to counters and histograms (always use the mean) counter_mean_queue_length.count( sim.counter_collection.cnt_ql.get_mean()) hist_mean_queue_length.count( sim.counter_collection.cnt_ql.get_mean()) counter_mean_waiting_time.count( sim.counter_collection.cnt_wt.get_mean()) hist_mean_waiting_time.count( sim.counter_collection.cnt_wt.get_mean()) pyplot.subplot(223) pyplot.xlabel("Mean waiting time [ms] (SIM_TIME = 1.000.000ms)") pyplot.ylabel("Distribution over n") hist_mean_waiting_time.report() pyplot.subplot(224) pyplot.xlabel("Mean queue length (SIM_TIME = 1.000.000ms)") pyplot.ylabel("Distribution over n") hist_mean_queue_length.report() # if desired, print statistics for queue length and waiting time if print_queue_length: print('Buffer size: ' + str(sim.sim_param.S) + ', simulation time: ' + str(sim.sim_param.SIM_TIME) + ', Mean buffer content: ' + str(counter_mean_queue_length.get_mean()) + ' Variance: ' + str(counter_mean_queue_length.get_var())) if print_waiting_time: print('Buffer size: ' + str(sim.sim_param.S) + ', simulation time: ' + str(sim.sim_param.SIM_TIME) + ', Mean waiting time: ' + str(counter_mean_waiting_time.get_mean()) + ' Variance: ' + str(counter_mean_waiting_time.get_var())) # set axis ranges for better comparison and display accumulated plot pyplot.subplot(221) pyplot.xlim([0, 3500]) pyplot.subplot(223) pyplot.xlim([0, 3500]) pyplot.subplot(222) pyplot.xlim([-.5, sim.sim_param.S_MAX + .5]) pyplot.subplot(224) pyplot.xlim([-.5, sim.sim_param.S_MAX + .5]) pyplot.show()
from simulation import Simulation from matplotlib import pyplot from counter import TimeIndependentCounter from histogram import TimeIndependentHistogram """ This file should be used to keep all necessary code that is used for the simulation study in part 2 of the programming assignment. It contains the tasks 2.7.1 and 2.7.2. The function do_simulation_study() should be used to run the simulation routine, that is described in the assignment. """ sim_param = SimParam() random.seed(sim_param.SEED) sim = Simulation(sim_param) ql_count = TimeIndependentCounter() ql_hist = TimeIndependentHistogram(sim, "q") wt_count = TimeIndependentCounter() wt_hist = TimeIndependentHistogram(sim, "w") def task_2_7_1(): """ Here, you should execute task 2.7.1 (and 2.7.2, if you want). """ # TODO Task 2.7.1: Your code goes here return do_simulation_study(sim) def task_2_7_2(): """
def do_simulation_study(sim, print_queue_length=False, print_waiting_time=True): """ This simulation study is different from the one made in assignment 1. It is mainly used to gather and visualize statistics for different buffer sizes S instead of finding a minimal number of spaces for a desired quality. For every buffer size S (which ranges from 5 to 7), statistics are printed (depending on the input parameters). Finally, after all runs, the results are plotted in order to visualize the differences and giving the ability to compare them. The simulations are run first for 100s, then for 1000s. For each simulation time, two diagrams are shown: one for the distribution of the mean waiting times and one for the average buffer usage :param sim: the simulation object to do the simulation :param print_queue_length: print the statistics for the queue length to the console :param print_waiting_time: print the statistics for the waiting time to the console """ # TODO Task 2.7.1: Your code goes here # TODO Task 2.7.2: Your code goes here for i in sim.sim_param.S_VALUES: sim.sim_param.S = i mean_waiting_time_histogram = TimeIndependentHistogram(sim, "bp") for j in range(sim.sim_param.NO_OF_RUNS): sim.reset() sim_result = sim.do_simulation() mean_waiting_time_histogram.count( sim.counter_collection.cnt_wt.get_mean()) mean_waiting_time_histogram.report() mean_queue_length_histogram1 = TimeIndependentCounter("1") mean_queue_length_histogram2 = TimeIndependentCounter("2") mean_queue_length_histogram3 = TimeIndependentCounter("3") width = 0.1 sim.sim_param.S = 5 for j in range(sim.sim_param.NO_OF_RUNS): sim.reset() sim_result = sim.do_simulation() mean_queue_length_histogram1.count( sim.counter_collection.cnt_ql.get_mean()) sim.sim_param.S = 6 for j in range(sim.sim_param.NO_OF_RUNS): sim.reset() sim_result1 = sim.do_simulation() mean_queue_length_histogram2.count( sim.counter_collection.cnt_ql.get_mean()) sim.sim_param.S = 7 for j in range(sim.sim_param.NO_OF_RUNS): sim.reset() sim_result2 = sim.do_simulation() mean_queue_length_histogram3.count( sim.counter_collection.cnt_ql.get_mean()) histogram1, bins1 = numpy.histogram(mean_queue_length_histogram1.values, 25, (0.0, 7.0)) histogram2, bins2 = numpy.histogram(mean_queue_length_histogram2.values, 25, (0.0, 7.0)) histogram3, bins3 = numpy.histogram(mean_queue_length_histogram3.values, 25, (0.0, 7.0)) fig, ax = pyplot.subplots() bins2 = array(bins2.tolist()) bins2 = bins2 + ones(len(bins2.tolist())) * width bins3 = array(bins3.tolist()) bins3 = bins3 + ones(len(bins3.tolist())) * 2.0 * width rects1 = ax.bar(bins1.tolist(), histogram1.tolist() + [0], width, color='r') rects2 = ax.bar(bins2.tolist(), histogram2.tolist() + [0], width, color='g') rects3 = ax.bar(bins3.tolist(), histogram3.tolist() + [0], width, color='b') ax.legend((rects1[0], rects2[0], rects3[0]), ('S5', 'S6', 'S7')) pyplot.show()
class CounterCollection(object): """ CounterCollection is a collection of all counters and histograms that are used in the simulations. It contains several counters and histograms, that are used in the different tasks. Reporting is done by calling the report function. This function can be adapted, depending on which counters should report their results and print strings or plot histograms. """ def __init__(self, server): """ Initialize the counter collection. :param sim: the simulation, the CounterCollection belongs to. """ self.server = server #self.sim = server.slicesim # waiting time #self.cnt_wt = TimeIndependentCounter(self.server) #self.hist_wt = TimeIndependentHistogram(self.server, "w") #self.acnt_wt = TimeIndependentAutocorrelationCounter("waiting time with lags 1 to 20", max_lag=20) # system time(delay) self.cnt_syst = TimeIndependentCounter(self.server) self.hist_syst = TimeIndependentHistogram(self.server, "s") # queue length self.cnt_ql = TimeDependentCounter(self.server) self.hist_ql = TimeDependentHistogram(self.server, "q") # throughput self.cnt_tp = TimeDependentCounter(self.server, 'tp') self.cnt_tp2 = TimeDependentCounter(self.server, 'tp2') # system utilization #self.cnt_sys_util = TimeDependentCounter(self.server) # blocking probability #self.cnt_bp = TimeIndependentCounter(self.server, "bp") #self.hist_bp = TimeIndependentHistogram(self.server, "bp") # cross correlations #self.cnt_iat_wt = TimeIndependentCrosscorrelationCounter("inter-arrival time vs. waiting time") #self.cnt_iat_st = TimeIndependentCrosscorrelationCounter("inter-arrival time vs. service time") #self.cnt_iat_syst = TimeIndependentCrosscorrelationCounter("inter-arrival time vs. system time") #self.cnt_st_syst = TimeIndependentCrosscorrelationCounter("service time vs. system time") def reset(self): """ Resets all counters and histograms. """ #self.cnt_wt.reset() #self.hist_wt.reset() #self.acnt_wt.reset() self.cnt_syst.reset() self.hist_syst.reset() self.cnt_ql.reset() self.hist_ql.reset() self.cnt_tp.reset() #self.cnt_sys_util.reset() #self.cnt_bp.reset() #self.hist_bp.reset() #self.cnt_iat_wt.reset() #self.cnt_iat_st.reset() #self.cnt_iat_syst.reset() #self.cnt_st_syst.reset() def report(self, filename=''): """ Calls the report function of the counters and histograms. Can be adapted, such that not all reports are printed """ #self.cnt_wt.report(filename) #self.hist_wt.report(filename) #self.acnt_wt.report() self.cnt_syst.report(filename) self.hist_syst.report(filename) self.cnt_ql.report(filename) self.hist_ql.report(filename) self.cnt_tp.report(filename) #self.cnt_sys_util.report() #self.cnt_iat_wt.report() #self.cnt_iat_st.report() #self.cnt_iat_syst.report() #self.cnt_st_syst.report() def count_throughput(self, throughput): """ Count a throughput. Its data is counted by the various counters tp in kilobits per second """ self.cnt_tp.count(throughput) def count_throughput2(self, throughput): """ Count a throughput. Its data is counted by the various counters tp in kilobits per second """ self.cnt_tp2.count(throughput) def count_packet(self, packet): """ Count a packet. Its data is counted by the various counters """ #self.cnt_wt.count(packet.get_waiting_time()) #self.hist_wt.count(packet.get_waiting_time()) #self.acnt_wt.count(packet.get_waiting_time()) self.cnt_syst.count(packet.get_system_time()) self.hist_syst.count(packet.get_system_time()) #self.cnt_iat_wt.count(packet.get_interarrival_time(), packet.get_waiting_time()) #self.cnt_iat_st.count(packet.get_interarrival_time(), packet.get_service_time()) #self.cnt_iat_syst.count(packet.get_interarrival_time(), packet.get_system_time()) #self.cnt_st_syst.count(packet.get_service_time(), packet.get_system_time()) def count_queue(self): """ Count the number of packets in the buffer and add the values to the corresponding (time dependent) histogram. This function should be called at least whenever the number of packets in the buffer changes. The system utilization is counted as well and can be counted from the counter cnt_sys_util. """ self.cnt_ql.count(int(self.server.get_queue_length())) self.hist_ql.count(self.server.get_queue_length())