Exemple #1
0
 def get_experts(
         self,
         uids,
         expiration_time: Optional[DHTExpiration] = None,
         return_future: bool = False) -> List[Optional[RemoteExpert]]:
     logger.warning(
         "dht.get_experts is scheduled for removal in 0.9.8, please use hivemind.get_experts."
     )
     return hivemind.get_experts(self, uids, expiration_time, return_future)
def test_store_get_experts():
    peers = [hivemind.DHT(start=True)]
    for i in range(10):
        neighbors_i = [
            f'{LOCALHOST}:{node.port}'
            for node in random.sample(peers, min(3, len(peers)))
        ]
        peers.append(hivemind.DHT(initial_peers=neighbors_i, start=True))

    first_peer = random.choice(peers)
    other_peer = random.choice(peers)

    expert_uids = [f"my_expert.{i}" for i in range(50)]
    batch_size = 10
    for batch_start in range(0, len(expert_uids), batch_size):
        hivemind.declare_experts(
            first_peer, expert_uids[batch_start:batch_start + batch_size],
            'localhost:1234')

    found = get_experts(other_peer,
                        random.sample(expert_uids, 5) + ['foo', 'bar'])
    assert all(res is not None
               for res in found[:-2]), "Could not find some existing experts"
    assert all(res is None for res in found[-2:]), "Found non-existing experts"

    other_expert, other_port = "my_other_expert.1337", random.randint(
        1000, 9999)
    hivemind.declare_experts(other_peer, [other_expert],
                             f'that_host:{other_port}')
    first_notfound, first_found = get_experts(first_peer,
                                              ['foobar', other_expert])
    assert isinstance(first_found, hivemind.RemoteExpert)
    assert first_found.endpoint == f'that_host:{other_port}'

    for peer in peers:
        peer.shutdown()
def test_dht_single_node():
    node = hivemind.DHT(start=True)
    beam_search = MoEBeamSearcher(node, 'expert.', grid_size=(10, ))

    assert all(
        declare_experts(node, ['expert.1', 'expert.2', 'expert.3'],
                        f"{hivemind.LOCALHOST}:1337").values())
    assert len(declare_experts(node, ["ffn.1", "ffn.2"],
                               endpoint="that_place")) == 4
    assert len(
        declare_experts(node, ['e.1.2.3', 'e.1.2.5', 'e.2.0'],
                        f"{hivemind.LOCALHOST}:42")) == 7

    for expert in get_experts(node, ['expert.3', 'expert.2']):
        assert expert.endpoint == f"{hivemind.LOCALHOST}:1337"

    assert all(
        declare_experts(node, ['expert.5', 'expert.2'],
                        f"{hivemind.LOCALHOST}:1337").values())
    found_experts = beam_search.find_best_experts(
        [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
    assert len(found_experts) == 2 and [
        expert.uid for expert in found_experts
    ] == ['expert.5', 'expert.3']

    successors = beam_search.get_active_successors(
        ['e.1.2.', 'e.2.', 'e.4.5.'])
    assert len(successors['e.1.2.']) == 2
    assert successors['e.1.2.'][3] == UidEndpoint('e.1.2.3', f'{LOCALHOST}:42')
    assert successors['e.1.2.'][5] == UidEndpoint('e.1.2.5', f'{LOCALHOST}:42')
    assert len(
        successors['e.2.']) == 1 and successors['e.2.'][0] == UidEndpoint(
            'e.2.0', f'{LOCALHOST}:42')
    assert successors['e.4.5.'] == {}

    initial_beam = beam_search.get_initial_beam((3, 2, 1, 0, -1, -2, -3),
                                                beam_size=3)
    assert len(initial_beam) == 3
    assert initial_beam[0][:2] == (2.0, 'expert.1.')
    assert initial_beam[1][:2] == (1.0, 'expert.2.')
    assert initial_beam[2][:2] == (0.0, 'expert.3.')

    with pytest.raises(AssertionError):
        beam_search = MoEBeamSearcher(node, 'expert.1.ffn', (2, 2))

    with pytest.raises(AssertionError):
        beam_search.get_active_successors(['e.1.2.', 'e.2', 'e.4.5.'])
Exemple #4
0
def benchmark_dht(num_peers: int, initial_peers: int, num_experts: int,
                  expert_batch_size: int, random_seed: int,
                  wait_after_request: float, wait_before_read: float,
                  wait_timeout: float, expiration: float):
    random.seed(random_seed)

    print("Creating peers...")
    peers = []
    for _ in trange(num_peers):
        neighbors = [
            f'0.0.0.0:{node.port}'
            for node in random.sample(peers, min(initial_peers, len(peers)))
        ]
        peer = hivemind.DHT(initial_peers=neighbors,
                            start=True,
                            wait_timeout=wait_timeout,
                            listen_on=f'0.0.0.0:*')
        peers.append(peer)

    store_peer, get_peer = peers[-2:]

    expert_uids = list(
        set(f"expert.{random.randint(0, 999)}.{random.randint(0, 999)}.{random.randint(0, 999)}"
            for _ in range(num_experts)))
    print(f"Sampled {len(expert_uids)} unique ids (after deduplication)")
    random.shuffle(expert_uids)

    print(f"Storing experts to dht in batches of {expert_batch_size}...")
    successful_stores = total_stores = total_store_time = 0
    benchmark_started = time.perf_counter()
    endpoints = []

    for start in trange(0, num_experts, expert_batch_size):
        store_start = time.perf_counter()
        endpoints.append(random_endpoint())
        store_ok = hivemind.declare_experts(store_peer,
                                            expert_uids[start:start +
                                                        expert_batch_size],
                                            endpoints[-1],
                                            expiration=expiration)
        successes = store_ok.values()
        total_store_time += time.perf_counter() - store_start

        total_stores += len(successes)
        successful_stores += sum(successes)
        time.sleep(wait_after_request)

    print(
        f"Store success rate: {successful_stores / total_stores * 100:.1f}% ({successful_stores} / {total_stores})"
    )
    print(
        f"Mean store time: {total_store_time / total_stores:.5}, Total: {total_store_time:.5}"
    )
    time.sleep(wait_before_read)

    if time.perf_counter() - benchmark_started > expiration:
        logger.warning(
            "All keys expired before benchmark started getting them. Consider increasing expiration_time"
        )

    successful_gets = total_get_time = 0

    for start in trange(0, len(expert_uids), expert_batch_size):
        get_start = time.perf_counter()
        get_result = hivemind.get_experts(
            get_peer, expert_uids[start:start + expert_batch_size])
        total_get_time += time.perf_counter() - get_start

        for i, expert in enumerate(get_result):
            if expert is not None and expert.uid == expert_uids[start + i] \
                    and expert.endpoint == endpoints[start // expert_batch_size]:
                successful_gets += 1

    if time.perf_counter() - benchmark_started > expiration:
        logger.warning(
            "keys expired midway during get requests. If that isn't desired, increase expiration_time param"
        )

    print(
        f"Get success rate: {successful_gets / len(expert_uids) * 100:.1f} ({successful_gets} / {len(expert_uids)})"
    )
    print(
        f"Mean get time: {total_get_time / len(expert_uids):.5f}, Total: {total_get_time:.5f}"
    )

    alive_peers = [peer.is_alive() for peer in peers]
    print(f"Node survival rate: {len(alive_peers) / len(peers) * 100:.3f}%")
Exemple #5
0
def generate_uids_from_pattern(num_experts: int,
                               expert_pattern: Optional[str],
                               dht: Optional[DHT] = None,
                               attempts_per_expert=10) -> List[str]:
    """
    Sample experts from a given pattern, remove duplicates.
    :param num_experts: sample this many unique expert uids
    :param expert_pattern: a string pattern or a list of expert uids,  example: myprefix.[0:32].[0:256]\
     means "sample random experts between myprefix.0.0 and myprefix.255.255;
    :param dht: if specified, uses this DHT to check that expert uids are not yet occupied by other peers
    :param attempts_per_expert: give up if unable to generate a new expert uid after this many attempts per uid
    :note: this method is not strictly process-safe. If several servers run it concurrently, they have
     a small chance of sampling duplicate expert uids.
    """
    remaining_attempts = attempts_per_expert * num_experts
    found_uids, attempted_uids = list(), set()

    def _generate_uid():
        if expert_pattern is None:
            return f"expert{UID_DELIMITER}{attempts_per_expert * num_experts - remaining_attempts}"

        uid = []
        for block in expert_pattern.split(UID_DELIMITER):
            try:
                if '[' not in block and ']' not in block:
                    uid.append(block)
                elif block.startswith('[') and block.endswith(
                        ']') and ':' in block:
                    slice_start, slice_end = map(int, block[1:-1].split(':'))
                    uid.append(str(random.randint(slice_start, slice_end - 1)))
                else:
                    raise ValueError(
                        "Block must be either fixed or a range [from:to]")
            except KeyboardInterrupt:
                raise
            except Exception as e:
                raise ValueError(
                    f"Expert pattern {expert_pattern} has invalid block {block}, {e}"
                )
        return UID_DELIMITER.join(uid)

    while remaining_attempts > 0 and len(found_uids) < num_experts:

        # 1. sample new expert uids at random
        new_uids = []
        while len(new_uids) + len(
                found_uids) < num_experts and remaining_attempts > 0:
            new_uid = _generate_uid()
            remaining_attempts -= 1
            if new_uid not in attempted_uids:
                attempted_uids.add(new_uid)
                new_uids.append(new_uid)

        # 2. look into DHT (if given) and remove duplicates
        if dht:
            existing_expert_uids = {
                found_expert.uid
                for found_expert in hivemind.get_experts(dht, new_uids)
                if found_expert is not None
            }
            new_uids = [
                new_uid for new_uid in new_uids
                if new_uid not in existing_expert_uids
            ]

        found_uids += new_uids

    if len(found_uids) != num_experts:
        logger.warning(
            f"Found only {len(found_uids)} out of {num_experts} free expert uids after "
            f"{attempts_per_expert * num_experts} attempts")
    return found_uids