def __init__(self): self.wdm = wdm.MassFunctionWDM(alter_model=wdm.Schneider12_vCDM, wdm_mass=3.0, wdm_model=wdm.Viel05) self.cdm = hmf.MassFunction()
def __init__(self): self.wdm = wdm.TransferWDM(wdm_mass=3.0, wdm_model=wdm.Viel05) self.cdm = hmf.MassFunction()
def __init__(self): self.wdm = wdm.MassFunctionWDM(alter_model=None, wdm_mass=3.0, wdm_model=wdm.Viel05) self.cdm = hmf.MassFunction()
def __init__(self): self.cdm = hmf.MassFunction() self.cls = wdm.Lovell14(m=self.cdm.m, dndm0=self.cdm.dndm)
def __init__(self): self.cdm = hmf.MassFunction() self.cls = wdm.Schneider12(m=self.cdm.m, dndm0=self.cdm.dndm)
def main(): # set cosmology and linear power spectrum ''' H0=70.0 Omega_M=0.279000 Omega_b=0.046100 w0=-1.000000 Omega_k=0.000000 n_s=0.972000 inputPk="../input_pk/wmap9_fid_matterpower_z0.dat" nH = 2.4e21 opt = 1 ''' H0 = 67.32117 Omega_M = 0.3158 Omega_b = 0.0490 w0 = -1.000000 Omega_k = 0.000000 n_s = 0.96605 inputPk = "../input_pk/planck_2018_test_matterpower.dat" nH = 2.4e21 opt = 1 xx_power.init_cosmology(H0, Omega_M, Omega_b, w0, Omega_k, n_s, nH, inputPk, opt) shot_noise = 0.00 ell = 10.**np.linspace(np.log10(10.), np.log10(3.e4), 31) theta_fid = [ 4.0, 3.e-5, 0.0800, 0.120000, 1.000000, 0.180000, 0.800000, 0.500000, 0.10000, 1.720000, 0.195000, 0.010000, 0.800000, 0.9, 1.0, 6.0, 3.0 ] param_ind_dict = { 'eps_f': 0, 'eps_DM': 1, 'f_star': 2, 'S_star': 3, 'A_C': 4, 'alpha_nt': 5, 'n_nt': 6, 'beta_nt': 7, 'gamma_mod0': 8, 'gamma_mod_zslope': 9, 'x_break': 10, 'x_smooth': 11, 'n_nt_mod': 12, 'clump0': 13, 'clump_zslope': 14, 'x_clump': 15, 'alpha_clump1': 16, } param_label_dict = { 'eps_f': r'$\epsilon_f/10^{-6}$', 'eps_DM': r'$\epsilon_{DM}$', 'f_star': r'$f_\star$', 'S_star': r'$S_\star$', 'A_C': r'$A_C$', 'alpha_nt': r'$\alpha_{nt}$', 'n_nt': r'$n_{nt}$', 'beta_nt': r'$\beta_{nt}$', 'gamma_mod0': r'$\Gamma_0$', 'gamma_mod_zslope': r'$\beta_\Gamma$', 'n_nt_mod': '$n_{nt,mod}$', 'clump0': r'$C_0$', 'clump_zslope': r'$\beta_C$', 'x_clump': r'$x_{C}$', 'alpha_clump1': r'$\alpha_{C1}$', 'alpha_clump2': r'$\alpha_{C2}$' } #rosat_ell, rosat_cl, rosat_var = read_data("../ROSAT/rosat_R4_R7_mask_hfi_R2_small_ell.txt") #rosat_cl *= rosat_ell*(rosat_ell+1.)/(2.0*math.pi) #rosat_cl_err = np.sqrt(rosat_var)*rosat_ell*(rosat_ell+1.)/(2.0*math.pi) #params = ['eps_f', 'f_star', 'S_star', 'alpha_nt', 'n_nt', 'beta_nt', 'gamma_mod0', 'gamma_mod_zslope', 'clump0', 'clump_zslope', 'x_clump', 'alpha_clump1', 'alpha_clump2' ] params = ['eps_f', 'f_star', 'clump0'] redshift, dlz = np.linspace(-4, np.log10(3.0), 10, retstep=True) redshift = 10**redshift print(dlz) my_cosmo = cosmo.Cosmology() hubble = my_cosmo.cosmo.h print(hubble) mvir, dlm = np.linspace(13, 16, 20, retstep=True) flux, dlf = np.linspace(-20, -10, 20, retstep=True) mvir = 10**mvir flux = 10**flux Nsperster = np.zeros(flux.shape) redo = False if redo: for iv, f in enumerate(flux): for iz, z in enumerate(redshift): dVdz = my_cosmo.cosmo.differential_comoving_volume( z).value * hubble**3 s = [] for mass in mvir: ff, m500 = xray_flux(mass, z, theta_fid) s.append(ff) s = np.array(s) mlim = np.interp(f, s, mvir) #h = hmf.MassFunction(z=z, Mmin=13, Mmax=16, dlog10m=0.1) h = hmf.MassFunction(z=z) Nm = 0.0 for im, mass in enumerate(h.m): if mass >= mlim: Nm += h.dlog10m * h.dndlog10m[im] * dVdz * z * dlz Nsperster[iv] += Nm np.save("logNlogS.npy", Nsperster) surveys = ["CDFS", "COSMOS", "XXL", "S82", "RASS"] areas = [0.25, 2.0, 50.0, 31.0, 4.0 * 3.141592 * ster2sqdeg * 0.25] sens = [0.66e-15, 1.7e-15, 5e-15, 0.87e-15, 5.6e-13] fig = plt.figure(figsize=(4, 4)) ax = fig.add_axes([0.21, 0.16, 0.75, 0.75]) print(areas, sens) ax.scatter(areas, sens, s=1.0, marker='o') for i, txt in enumerate(surveys): ax.annotate(txt, (areas[i], sens[i])) ax.set_xlabel(r'Area [deg$^2$]') ax.set_ylabel(r'flux [erg/s/cm$^2$]') ax.set_xscale('log') ax.set_yscale('log') #ax.set_xlim(1e-2, 1e5 ) #ax.set_ylim(1e-16, 1e-12) #ax.legend(loc='best') plt.show() fig.savefig("wedding_test.png") fig.clf()
def test_incorrect_update_arg(): t = hmf.MassFunction() t.update(wrong_arg=3)
def test_incorrect_argument(): t = hmf.MassFunction(wrong_arg=3)