Exemple #1
0
 def __init__(self):
     self.wdm = wdm.MassFunctionWDM(alter_model=wdm.Schneider12_vCDM, wdm_mass=3.0, wdm_model=wdm.Viel05)
     self.cdm = hmf.MassFunction()
Exemple #2
0
 def __init__(self):
     self.wdm = wdm.TransferWDM(wdm_mass=3.0, wdm_model=wdm.Viel05)
     self.cdm = hmf.MassFunction()
Exemple #3
0
 def __init__(self):
     self.wdm = wdm.MassFunctionWDM(alter_model=None, wdm_mass=3.0, wdm_model=wdm.Viel05)
     self.cdm = hmf.MassFunction()
Exemple #4
0
 def __init__(self):
     self.cdm = hmf.MassFunction()
     self.cls = wdm.Lovell14(m=self.cdm.m, dndm0=self.cdm.dndm)
Exemple #5
0
 def __init__(self):
     self.cdm = hmf.MassFunction()
     self.cls = wdm.Schneider12(m=self.cdm.m, dndm0=self.cdm.dndm)
Exemple #6
0
def main():

    # set cosmology and linear power spectrum
    '''
    H0=70.0
    Omega_M=0.279000
    Omega_b=0.046100
    w0=-1.000000
    Omega_k=0.000000
    n_s=0.972000
    inputPk="../input_pk/wmap9_fid_matterpower_z0.dat"
    nH = 2.4e21
    opt = 1
    '''
    H0 = 67.32117
    Omega_M = 0.3158
    Omega_b = 0.0490
    w0 = -1.000000
    Omega_k = 0.000000
    n_s = 0.96605
    inputPk = "../input_pk/planck_2018_test_matterpower.dat"
    nH = 2.4e21
    opt = 1

    xx_power.init_cosmology(H0, Omega_M, Omega_b, w0, Omega_k, n_s, nH,
                            inputPk, opt)

    shot_noise = 0.00

    ell = 10.**np.linspace(np.log10(10.), np.log10(3.e4), 31)

    theta_fid = [
        4.0, 3.e-5, 0.0800, 0.120000, 1.000000, 0.180000, 0.800000, 0.500000,
        0.10000, 1.720000, 0.195000, 0.010000, 0.800000, 0.9, 1.0, 6.0, 3.0
    ]

    param_ind_dict = {
        'eps_f': 0,
        'eps_DM': 1,
        'f_star': 2,
        'S_star': 3,
        'A_C': 4,
        'alpha_nt': 5,
        'n_nt': 6,
        'beta_nt': 7,
        'gamma_mod0': 8,
        'gamma_mod_zslope': 9,
        'x_break': 10,
        'x_smooth': 11,
        'n_nt_mod': 12,
        'clump0': 13,
        'clump_zslope': 14,
        'x_clump': 15,
        'alpha_clump1': 16,
    }

    param_label_dict = {
        'eps_f': r'$\epsilon_f/10^{-6}$',
        'eps_DM': r'$\epsilon_{DM}$',
        'f_star': r'$f_\star$',
        'S_star': r'$S_\star$',
        'A_C': r'$A_C$',
        'alpha_nt': r'$\alpha_{nt}$',
        'n_nt': r'$n_{nt}$',
        'beta_nt': r'$\beta_{nt}$',
        'gamma_mod0': r'$\Gamma_0$',
        'gamma_mod_zslope': r'$\beta_\Gamma$',
        'n_nt_mod': '$n_{nt,mod}$',
        'clump0': r'$C_0$',
        'clump_zslope': r'$\beta_C$',
        'x_clump': r'$x_{C}$',
        'alpha_clump1': r'$\alpha_{C1}$',
        'alpha_clump2': r'$\alpha_{C2}$'
    }

    #rosat_ell, rosat_cl, rosat_var = read_data("../ROSAT/rosat_R4_R7_mask_hfi_R2_small_ell.txt")
    #rosat_cl *= rosat_ell*(rosat_ell+1.)/(2.0*math.pi)
    #rosat_cl_err = np.sqrt(rosat_var)*rosat_ell*(rosat_ell+1.)/(2.0*math.pi)

    #params = ['eps_f', 'f_star', 'S_star', 'alpha_nt', 'n_nt', 'beta_nt', 'gamma_mod0', 'gamma_mod_zslope', 'clump0', 'clump_zslope', 'x_clump', 'alpha_clump1', 'alpha_clump2' ]
    params = ['eps_f', 'f_star', 'clump0']

    redshift, dlz = np.linspace(-4, np.log10(3.0), 10, retstep=True)

    redshift = 10**redshift

    print(dlz)

    my_cosmo = cosmo.Cosmology()
    hubble = my_cosmo.cosmo.h
    print(hubble)

    mvir, dlm = np.linspace(13, 16, 20, retstep=True)
    flux, dlf = np.linspace(-20, -10, 20, retstep=True)

    mvir = 10**mvir
    flux = 10**flux

    Nsperster = np.zeros(flux.shape)

    redo = False

    if redo:
        for iv, f in enumerate(flux):
            for iz, z in enumerate(redshift):
                dVdz = my_cosmo.cosmo.differential_comoving_volume(
                    z).value * hubble**3
                s = []
                for mass in mvir:
                    ff, m500 = xray_flux(mass, z, theta_fid)
                    s.append(ff)
                s = np.array(s)
                mlim = np.interp(f, s, mvir)

                #h = hmf.MassFunction(z=z, Mmin=13, Mmax=16, dlog10m=0.1)
                h = hmf.MassFunction(z=z)

                Nm = 0.0
                for im, mass in enumerate(h.m):
                    if mass >= mlim:
                        Nm += h.dlog10m * h.dndlog10m[im] * dVdz * z * dlz
                Nsperster[iv] += Nm

        np.save("logNlogS.npy", Nsperster)

    surveys = ["CDFS", "COSMOS", "XXL", "S82", "RASS"]
    areas = [0.25, 2.0, 50.0, 31.0, 4.0 * 3.141592 * ster2sqdeg * 0.25]
    sens = [0.66e-15, 1.7e-15, 5e-15, 0.87e-15, 5.6e-13]

    fig = plt.figure(figsize=(4, 4))
    ax = fig.add_axes([0.21, 0.16, 0.75, 0.75])

    print(areas, sens)
    ax.scatter(areas, sens, s=1.0, marker='o')

    for i, txt in enumerate(surveys):
        ax.annotate(txt, (areas[i], sens[i]))

    ax.set_xlabel(r'Area [deg$^2$]')
    ax.set_ylabel(r'flux [erg/s/cm$^2$]')

    ax.set_xscale('log')
    ax.set_yscale('log')
    #ax.set_xlim(1e-2, 1e5 )
    #ax.set_ylim(1e-16, 1e-12)

    #ax.legend(loc='best')

    plt.show()

    fig.savefig("wedding_test.png")
    fig.clf()
Exemple #7
0
def test_incorrect_update_arg():
    t = hmf.MassFunction()
    t.update(wrong_arg=3)
Exemple #8
0
def test_incorrect_argument():
    t = hmf.MassFunction(wrong_arg=3)