def test_get_max_episode_length(): dict_env = DummyVecEnv([lambda: BitFlippingEnv()]) # Cannot infer max epsiode length with pytest.raises(ValueError): get_time_limit(dict_env, current_max_episode_length=None) default_length = 10 assert get_time_limit( dict_env, current_max_episode_length=default_length) == default_length env = gym.make("CartPole-v1") vec_env = DummyVecEnv([lambda: env]) assert get_time_limit(vec_env, current_max_episode_length=None) == 500 # Overwrite max_episode_steps assert get_time_limit( vec_env, current_max_episode_length=default_length) == default_length # Set max_episode_steps to None env.spec.max_episode_steps = None vec_env = DummyVecEnv([lambda: env]) with pytest.raises(ValueError): get_time_limit(vec_env, current_max_episode_length=None) # Initialize HER and specify max_episode_length, should not raise an issue HER(MlpPolicyDQN, dict_env, DQN, max_episode_length=5) with pytest.raises(ValueError): HER(MlpPolicyDQN, dict_env, DQN) # Wrapped in a timelimit, should be fine # Note: it requires env.spec to be defined env = DummyVecEnv([lambda: gym.wrappers.TimeLimit(BitFlippingEnv(), 10)]) HER(MlpPolicyDQN, env, DQN)
def test_performance_her(online_sampling, n_bits): """ That DQN+HER can solve BitFlippingEnv. It should not work when n_sampled_goal=0 (DQN alone). """ env = BitFlippingEnv(n_bits=n_bits, continuous=False) model = HER( MlpPolicyDQN, env, DQN, n_sampled_goal=5, goal_selection_strategy="future", online_sampling=online_sampling, verbose=1, learning_rate=5e-4, max_episode_length=n_bits, train_freq=1, learning_starts=100, exploration_final_eps=0.02, target_update_interval=500, seed=0, batch_size=32, ) model.learn(total_timesteps=4000, log_interval=50) # 90% training success assert np.mean(model.ep_success_buffer) > 0.50
def test_full_replay_buffer(): """ Test if HER works correctly with a full replay buffer when using online sampling. It should not sample the current episode which is not finished. """ n_bits = 4 env = BitFlippingEnv(n_bits=n_bits, continuous=True) # use small buffer size to get the buffer full model = HER( MlpPolicySAC, env, SAC, goal_selection_strategy="future", online_sampling=True, gradient_steps=1, train_freq=4, max_episode_length=n_bits, policy_kwargs=dict(net_arch=[64]), learning_starts=1, buffer_size=20, verbose=1, ) model.learn(total_timesteps=N_STEPS_SMALL)
def test_eval_success_logging(tmp_path): n_bits = 2 env = BitFlippingEnv(n_bits=n_bits) eval_env = DummyVecEnv([lambda: BitFlippingEnv(n_bits=n_bits)]) eval_callback = EvalCallback( ObsDictWrapper(eval_env), eval_freq=250, log_path=tmp_path, warn=False, ) model = HER(MlpPolicyDQN, env, DQN, learning_starts=100, seed=0, max_episode_length=n_bits) model.learn(500, callback=eval_callback) assert len(eval_callback._is_success_buffer) > 0 # More than 50% success rate assert np.mean(eval_callback._is_success_buffer) > 0.5
def test_her(model_class, policy_class, online_sampling): """ Test Hindsight Experience Replay. """ n_bits = 4 env = BitFlippingEnv(n_bits=n_bits, continuous=not (model_class == DQN)) model = HER( policy_class, env, model_class, goal_selection_strategy="future", online_sampling=online_sampling, gradient_steps=1, train_freq=4, max_episode_length=n_bits, policy_kwargs=dict(net_arch=[64]), learning_starts=0, ) model.learn(total_timesteps=N_STEPS_SMALL)
def test_goal_selection_strategy(goal_selection_strategy, online_sampling): """ Test different goal strategies. """ env = BitFlippingEnv(continuous=True) normal_action_noise = NormalActionNoise(np.zeros(1), 0.1 * np.ones(1)) model = HER( MlpPolicySAC, env, SAC, goal_selection_strategy=goal_selection_strategy, online_sampling=online_sampling, gradient_steps=1, train_freq=1, max_episode_length=10, policy_kwargs=dict(net_arch=[64]), learning_starts=0, action_noise=normal_action_noise, ) assert model.action_noise is not None model.learn(total_timesteps=N_STEPS_SMALL)
def test_save_load(tmp_path, model_class, policy_class, use_sde, online_sampling): """ Test if 'save' and 'load' saves and loads model correctly """ if use_sde and model_class != SAC: pytest.skip("Only SAC has gSDE support") n_bits = 4 env = BitFlippingEnv(n_bits=n_bits, continuous=not (model_class == DQN)) kwargs = dict(use_sde=True) if use_sde else {} # create model model = HER( policy_class, env, model_class, n_sampled_goal=5, goal_selection_strategy="future", online_sampling=online_sampling, verbose=0, tau=0.05, batch_size=128, learning_rate=0.001, policy_kwargs=dict(net_arch=[64]), buffer_size=int(1e6), gamma=0.98, gradient_steps=1, train_freq=4, learning_starts=0, max_episode_length=n_bits, **kwargs, ) model.learn(total_timesteps=N_STEPS_SMALL) env.reset() observations_list = [] for _ in range(10): obs = env.step(env.action_space.sample())[0] observation = ObsDictWrapper.convert_dict(obs) observations_list.append(observation) observations = np.array(observations_list) # Get dictionary of current parameters params = deepcopy(model.policy.state_dict()) # Modify all parameters to be random values random_params = dict((param_name, th.rand_like(param)) for param_name, param in params.items()) # Update model parameters with the new random values model.policy.load_state_dict(random_params) new_params = model.policy.state_dict() # Check that all params are different now for k in params: assert not th.allclose( params[k], new_params[k]), "Parameters did not change as expected." params = new_params # get selected actions selected_actions, _ = model.predict(observations, deterministic=True) # Check model.save(tmp_path / "test_save.zip") del model # test custom_objects # Load with custom objects custom_objects = dict(learning_rate=2e-5, dummy=1.0) model_ = HER.load(str(tmp_path / "test_save.zip"), env=env, custom_objects=custom_objects, verbose=2) assert model_.verbose == 2 # Check that the custom object was taken into account assert model_.learning_rate == custom_objects["learning_rate"] # Check that only parameters that are here already are replaced assert not hasattr(model_, "dummy") model = HER.load(str(tmp_path / "test_save.zip"), env=env) # check if params are still the same after load new_params = model.policy.state_dict() # Check that all params are the same as before save load procedure now for key in params: assert th.allclose( params[key], new_params[key] ), "Model parameters not the same after save and load." # check if model still selects the same actions new_selected_actions, _ = model.predict(observations, deterministic=True) assert np.allclose(selected_actions, new_selected_actions, 1e-4) # check if learn still works model.learn(total_timesteps=N_STEPS_SMALL) # Test that the change of parameters works model = HER.load(str(tmp_path / "test_save.zip"), env=env, verbose=3, learning_rate=2.0) assert model.model.learning_rate == 2.0 assert model.verbose == 3 # clear file from os os.remove(tmp_path / "test_save.zip")
def test_save_load_replay_buffer(tmp_path, recwarn, online_sampling, truncate_last_trajectory): """ Test if 'save_replay_buffer' and 'load_replay_buffer' works correctly """ # remove gym warnings warnings.filterwarnings(action="ignore", category=DeprecationWarning) warnings.filterwarnings(action="ignore", category=UserWarning, module="gym") path = pathlib.Path(tmp_path / "logs/replay_buffer.pkl") path.parent.mkdir(exist_ok=True, parents=True) # to not raise a warning env = BitFlippingEnv(n_bits=4, continuous=True) model = HER( MlpPolicySAC, env, SAC, goal_selection_strategy="future", online_sampling=online_sampling, gradient_steps=1, train_freq=4, max_episode_length=4, buffer_size=int(2e4), policy_kwargs=dict(net_arch=[64]), seed=0, ) model.learn(N_STEPS_SMALL) old_replay_buffer = deepcopy(model.replay_buffer) model.save_replay_buffer(path) del model.model.replay_buffer with pytest.raises(AttributeError): model.replay_buffer # Check that there is no warning assert len(recwarn) == 0 model.load_replay_buffer(path, truncate_last_trajectory) if truncate_last_trajectory: assert len(recwarn) == 1 warning = recwarn.pop(UserWarning) assert "The last trajectory in the replay buffer will be truncated" in str( warning.message) else: assert len(recwarn) == 0 if online_sampling: n_episodes_stored = model.replay_buffer.n_episodes_stored assert np.allclose( old_replay_buffer.buffer["observation"][:n_episodes_stored], model.replay_buffer.buffer["observation"][:n_episodes_stored], ) assert np.allclose( old_replay_buffer.buffer["next_obs"][:n_episodes_stored], model.replay_buffer.buffer["next_obs"][:n_episodes_stored], ) assert np.allclose( old_replay_buffer.buffer["action"][:n_episodes_stored], model.replay_buffer.buffer["action"][:n_episodes_stored]) assert np.allclose( old_replay_buffer.buffer["reward"][:n_episodes_stored], model.replay_buffer.buffer["reward"][:n_episodes_stored]) # we might change the last done of the last trajectory so we don't compare it assert np.allclose( old_replay_buffer.buffer["done"][:n_episodes_stored - 1], model.replay_buffer.buffer["done"][:n_episodes_stored - 1], ) else: assert np.allclose(old_replay_buffer.observations, model.replay_buffer.observations) assert np.allclose(old_replay_buffer.actions, model.replay_buffer.actions) assert np.allclose(old_replay_buffer.rewards, model.replay_buffer.rewards) assert np.allclose(old_replay_buffer.dones, model.replay_buffer.dones) # test if continuing training works properly reset_num_timesteps = False if truncate_last_trajectory is False else True model.learn(N_STEPS_SMALL, reset_num_timesteps=reset_num_timesteps)