def plot_sources(point_source, fault_source):
   
    llon, ulon, llat, ulat = 105, 155, -45, -5,
    map_config = {'min_lon': np.floor(llon), 'max_lon': np.ceil(ulon),
                  'min_lat': np.floor(llat), 'max_lat': np.ceil(ulat), 'resolution':'i'}
    basemap1 = HMTKBaseMap(map_config, 'Point and fault sources')
    for pt_source in point_source:
         x,y = basemap1.m(pt_source.location.longitude, 
                         pt_source.location.latitude)
         basemap1.m.plot(x, y, 'rs',
                         markersize = 2.0)
    for simplefault in fault_source:
        trace_lons = np.array([pnt.longitude
                               for pnt in simplefault.fault_trace.points])
        trace_lats = np.array([pnt.latitude
                               for pnt in simplefault.fault_trace.points])
        x, y = basemap1.m(trace_lons, trace_lats)
        basemap1.m.plot(x, y, 'b', linewidth=1.3)
    basemap1.savemap('Point and fault sources.png')
Exemple #2
0
def decluster_catalogue(catalogue, config):
    
    
    ### 
    ###    Catalogue cache or read/cache
    ###

    # Set up the declustering algorithm
    # Step 1 - set-up the tool
    if config['decluster_method'] == 'afteran':
        decluster_method = Afteran()
    elif config['decluster_method'] == 'gardner_knopoff':
        decluster_method = GardnerKnopoffType1()
    else:
        print "invalid decluster_method configuration: use [afteran|gardner_knopoff]"    
        return None 
    
    
    print 'Running declustering ...'
    cluster_vector, flag_vector = decluster_method.decluster(catalogue, config)
    print 'done!'
    print '%s clusters found' % np.max(cluster_vector)
    print '%s Non-poissionian events identified' % np.sum(flag_vector != 0)

    
    if config['plot']:
        ### 
        ###    Map Config 
        ###
        
        map_dpi = 90 
        add_geology = True
        add_sourcemodel = True
        savefig=False
        
        #map_title = 'Brazilian Seismic Zones'
        map_title = 'Clusters'
        #map_title = 'ISC-GEM Catalogue'
        #map_title = 'South-American Lithology'
        
        
        # Configure the limits of the map and the coastline resolution
        map_config = {'min_lon': -80.0, 'max_lon': -30.0, 'min_lat': -37.0, 'max_lat': 14.0, 'resolution':'l'}
        #map_config = {'min_lon': -72.0, 'max_lon': -68.0, 'min_lat': -22.0, 'max_lat': -18.0, 'resolution':'l'}
        #map_config = {'min_lon': -95.0, 'max_lon': -25.0, 'min_lat': -65.0, 'max_lat': 25.0, 'resolution':'l'}
        
        basemap = HMTKBaseMap(map_config, map_title, dpi=map_dpi)       
        #basemap.add_catalogue(catalogue, linewidth=0.2, alpha=0.1, overlay=True)
    
        idx = cluster_vector != 0
        x = catalogue.data['longitude'][idx]
        y = catalogue.data['latitude'][idx]
        c = cluster_vector[idx]
        
        basemap.add_colour_scaled_points(x, y, c, 
                                         overlay=True,
                                         shape='s', alpha=0.5, size=100, 
                                         linewidth=0.5, facecolor='none', 
                                         cmap=plt.cm.get_cmap('Paired'),
                                         )
    
        plt.show()

        if config['figname']:
            basemap.savemap(config['figname'])

    
    print 'Original catalogue had %s events' % catalogue.get_number_events()
    catalogue.select_catalogue_events(flag_vector == 0)
    print 'Purged catalogue now contains %s events' % catalogue.get_number_events()

    if config['filename']:
        writer = CsvCatalogueWriter(config['filename'])
        writer.write_file(catalogue)
    
    return catalogue
Exemple #3
0
def run_smoothing(grid_lims,
                  smoothing_config,
                  catalogue,
                  completeness_table,
                  map_config,
                  run,
                  overwrite=True):
    """Run all the smoothing
    """
    ystart = completeness_table[-1][0]
    yend = catalogue.end_year
    catalogue_comp = deepcopy(catalogue)
    # Ensuring that catalogue is cleaned of earthquakes outside of
    # completeness period
    index = catalogue_comp.data['year'] >= ystart
    catalogue_comp.purge_catalogue(index)

    completeness_string = 'comp'
    for ym in completeness_table:
        completeness_string += '_%i_%.1f' % (ym[0], ym[1])
    smoother_filename = 'Australia_Fixed_%i_%i_b%.3f_mmin_%.1f_0.1%s.csv' % (
        smoothing_config["BandWidth"], smoothing_config["Length_Limit"],
        bvalue, completeness_table[0][1], completeness_string)
    filename = smoother_filename[:-4] + '.xml'
    if os.path.exists(filename) and not overwrite:
        print '%s already created, not overwriting!' % filename
        return
    smoother = SmoothedSeismicity(
        [105., 160., 0.1, -47., -5, 0.1, 0., 20., 20.],
        bvalue=smoothing_config['bvalue'])
    print 'Running smoothing'
    smoothed_grid = smoother.run_analysis(
        catalogue_comp,
        smoothing_config,
        completeness_table=completeness_table)

    smoother.write_to_csv(smoother_filename)

    from openquake.hazardlib.nrml import SourceModelParser, write, NAMESPACE
    from openquake.baselib.node import Node
    from openquake.hazardlib import nrml
    from openquake.hazardlib.sourcewriter import obj_to_node
    # Build nrml input file of point sources
    source_list = []
    #i=0
    min_mag = 4.5
    max_mag = 7.8
    bval = bvalue  # just define as 1 for time being
    # Read in data again to solve number fomatting issue in smoother.data
    # For some reason it just returns 0 for all a values
    try:
        data = np.genfromtxt(smoother_filename, delimiter=',', skip_header=1)
    except ValueError:
        print 'Something wrong with file %s' % smoother_filename
        sys.exit()
    tom = PoissonTOM(
        50)  # Dummy temporal occurence model for building pt sources
    msr = Leonard2014_SCR()
    for j in range(len(data[:, 4])):
        #    print smoother.data[j,:]
        identifier = 'FSS' + str(j) + '_' + str(run)
        name = 'Frankel' + str(j) + '_' + str(run)
        point = Point(data[j, 0], data[j, 1], data[j, 2])
        annual_rate = data[j, 4] / (yend - ystart + 1)
        aval = np.log10(annual_rate) + smoothing_config[
            'bvalue'] * completeness_table[0][1]
        mfd = TruncatedGRMFD(min_mag, max_mag, 0.1, aval, bval)
        hypo_depth_dist = PMF([(0.5, 10.0), (0.25, 5.0), (0.25, 15.0)])
        nodal_plane_dist = PMF([(0.3, NodalPlane(0, 30, 90)),
                                (0.2, NodalPlane(90, 30, 90)),
                                (0.3, NodalPlane(180, 30, 90)),
                                (0.2, NodalPlane(270, 30, 90))])
        point_source = PointSource(identifier, name, 'Non_cratonic', mfd, 2,
                                   msr, 2.0, tom, 0.1, 20.0, point,
                                   nodal_plane_dist, hypo_depth_dist)
        source_list.append(point_source)

    nodes = list(map(obj_to_node, sorted(source_list)))
    source_model = Node("sourceModel", {"name": name}, nodes=nodes)
    with open(filename, 'wb') as f:
        nrml.write([source_model], f, '%s', xmlns=NAMESPACE)

    # Creating a basemap - input a cconfiguration and (if desired) a title
    title = 'Smoothed seismicity rate for learning \nperiod %i 2017, Mmin = %.1f' % (
        completeness_table[0][0], completeness_table[0][1])
    basemap1 = HMTKBaseMap(map_config, 'Smoothed seismicity rate')
    # Adding the smoothed grip to the basemap
    sym = (2., 3., 'cx')
    x, y = basemap1.m(smoother.data[:, 0], smoother.data[:, 1])
    basemap1.m.scatter(x,
                       y,
                       marker='s',
                       c=np.log10(smoother.data[:, 4]),
                       cmap=plt.cm.coolwarm,
                       zorder=10,
                       lw=0,
                       vmin=-6.5,
                       vmax=1.5)
    basemap1.m.drawcoastlines(linewidth=1, zorder=50)  # Add coastline on top
    basemap1.m.drawmeridians(
        np.arange(map_config['min_lat'], map_config['max_lat'], 5))
    basemap1.m.drawparallels(
        np.arange(map_config['min_lon'], map_config['max_lon'], 5))
    plt.colorbar(label='log10(Smoothed rate per cell)')
    plt.legend()
    figname = smoother_filename[:-4] + '_smoothed_rates_map.png'
    plt.savefig(figname)
Exemple #4
0
catalogue.sort_catalogue_chronologically()
print 'Catalogue sorted chronologically!'

# In[ ]:

# Configure the limits of the map and the coastline resolution
map_config = {
    'min_lon': -80.0,
    'max_lon': -30.0,
    'min_lat': -37.0,
    'max_lat': 14.0,
    'resolution': 'l'
}

# Create a hmtk basemap
basemap1 = HMTKBaseMap(map_config, 'Earthquake Catalogue')
# Add a catalogue
basemap1.add_catalogue(catalogue)

# In[ ]:

# Limit the catalogue to the time period 1960 - 2012
valid_time = np.logical_and(catalogue.data['year'] >= 1900,
                            catalogue.data['year'] <= 2014)
catalogue.select_catalogue_events(valid_time)
plot_magnitude_time_density(catalogue, 0.2, 2.0)
print 'Catalogue now contains %s events' % catalogue.get_number_events()

# In[ ]:

# Show distribution of magnitudes with time
Exemple #5
0
# Map configuration
llon, ulon, llat, ulat = source.catalogue.get_bounding_box()
#map_config = {'min_lon': np.floor(llon), 'max_lon': np.ceil(ulon),
#              'min_lat': np.floor(llat), 'max_lat': np.ceil(ulat), 'resolution':'c'}
#map_config = {'min_lon': np.floor(105), 'max_lon': np.ceil(155),
#              'min_lat': np.floor(-45), 'max_lat': np.ceil(-9), 'resolution':'c'}
map_config = {
    'min_lon': np.floor(100),
    'max_lon': np.ceil(160),
    'min_lat': np.floor(-45),
    'max_lat': np.ceil(-4),
    'resolution': 'c'
}
# Creating a basemap - input a cconfiguration and (if desired) a title
basemap1 = HMTKBaseMap(map_config, 'Smoothed seismicity rate')
basemap1.m.drawmeridians(np.arange(llat, ulat, 5))
basemap1.m.drawparallels(np.arange(llon, ulon, 5))
#print smoother.data[:,0]
#print smoother.data[:,1]
# Adding the smoothed grip to the basemap
sym = (2., 3., 'cx')
x, y = basemap1.m(smoother.data[:, 0], smoother.data[:, 1])
#print data[:,4]
basemap1.m.scatter(x,
                   y,
                   marker='s',
                   c=np.log10(smoother.data[:, 4] -
                              bvalue * completeness_table_a[0][1]),
                   cmap=plt.cm.coolwarm,
                   zorder=10,
Exemple #6
0
    writer.write_file(catalogue)
    #exit()
    
    print 'File %s written' % output_file_name
    f=open(input_catalogue_file + ".pkl",'wb')
    pickle.dump(catalogue, f)
    f.close()




### 
###    Mapa
###
# Create a hmtk basemap
basemap1 = HMTKBaseMap(map_config, map_title, dpi=map_dpi)

### 
###    Geologia
###
if add_geology:
    wms_cprm = "http://onegeology.cprm.gov.br/cgi-bin/BRA_GSB_EN_Bedrock_Geology/wms?"
    wms_oneg = "http://mapdmzrec.brgm.fr/cgi-bin/mapserv54?map=/carto/ogg/mapFiles/CGMW_Bedrock_and_Structural_Geology.map&"
    
    wmsl_oneg = {'server_url': wms_oneg,
                  'layers': ['World_CGMW_50M_Geology'],
                  }
    
    wmsl_br_blt = {'server_url': wms_cprm,
                    'layers': ['BRA_GSB_EN_1M_BLT'],
                    'styles': ['default'],
likelihood_filename = os.path.join('llh_results',
                                   smoother_filename[:-4] + '_llh.csv')
f_out = open(likelihood_filename, 'w')
line = '%.10f,%.10f,%.10f,%.10f,%.10f' % (poiss_llh, kagan_i0, kagan_i1,
                                          uniform_llh, prob_gain)
f_out.write(line)
f_out.close()

###
#sys.exit()
###
# Creating a basemap - input a cconfiguration and (if desired) a title
title = 'Smoothed seismicity rate for learning \nperiod %i %i, K=%i, Mmin=%.1f' % (
    learning_start, learning_end, smoother.config['k'],
    smoother.config['mmin'])
basemap1 = HMTKBaseMap(map_config, title)
basemap1.m.drawmeridians(np.arange(llat, ulat, 5))
basemap1.m.drawparallels(np.arange(llon, ulon, 5))
# Adding the smoothed grip to the basemap
sym = (2., 3., 'cx')
x, y = basemap1.m(smoother.grid[:, 0], smoother.grid[:, 1])
if smoother.config['mmin'] == 3.5:
    vmax = -1.0
elif smoother.config['mmin'] == 4.0:
    vmax = -2.5
else:
    vmax = -1.0
basemap1.m.scatter(x,
                   y,
                   marker='s',
                   c=np.log10(smoother.rates),
Exemple #8
0
source_model = parser.read_file(
    "Aus Source Model 1")  # You need to supply a name for the source model

# Map configuration
llon, ulon, llat, ulat = catalogue_clean.get_bounding_box()
#map_config = {'min_lon': np.floor(llon), 'max_lon': np.ceil(ulon),
#             'min_lat': np.floor(llat), 'max_lat': np.ceil(ulat), 'resolution':'c'}
map_config = {
    'min_lon': np.floor(100),
    'max_lon': np.ceil(160),
    'min_lat': np.floor(-45),
    'max_lat': np.ceil(-4),
    'resolution': 'c'
}
# Creating a basemap - input a cconfiguration and (if desired) a title
basemap1 = HMTKBaseMap(map_config, 'Earthquake Catalogue')

# Adding the seismic sources
basemap1.add_source_model(source_model,
                          area_border='r-',
                          border_width=1.5,
                          alpha=0.5)

# Select catalogue from within sourcezone
selector1 = CatalogueSelector(catalogue_depth_clean, create_copy=True)
for source in source_model.sources:
    source.select_catalogue(selector1)

    llon, ulon, llat, ulat = source.catalogue.get_bounding_box()
    print llon, ulon, llat, ulat
    # Map the Source
Exemple #9
0
def run_smoothing(grid_lims, config, catalogue, completeness_table, map_config,
                  run):
    """Run all the smoothing
    :params config:
        Dictionary of configuration parameters.
        For more info see helmstetter_werner_2012 code 
        and docs.
    """

    completeness_string = 'comp'
    for ym in completeness_table:
        completeness_string += '_%i_%.1f' % (ym[0], ym[1])
    smoother_filename = "Australia_Adaptive_K%i_b%.3f_mmin%.1f_%s.csv" % (
        config['k'], config['bvalue'], config['mmin'], completeness_string)

    filename = smoother_filename[:-4] + '.xml'
    if os.path.exists(filename) and not overwrite:
        print '%s already created, not overwriting!' % filename
        return

    smoother = h_w.HelmstetterEtAl2007(grid_lims,
                                       config,
                                       catalogue,
                                       storage_file=("Aus1_tmp2%.3f_%s.hdf5" %
                                                     (config['bvalue'], run)))
    smoother._get_catalogue_completeness_weights(completeness_table)
    smoother.build_distance_arrays()
    smoother.build_catalogue_2_grid_array()
    # Exhaustive smoothing
    exhaustive = False
    if exhaustive == True:
        params, poiss_llh = smoother.exhaustive_smoothing(
            np.arange(2, 10, 1), np.arange(1.0e-6, 1.0e-5, 2.0e-6))
        print params, poiss_llh
        smoother.config["k"] = params[0]
        smoother.config["r_min"] = params[1]
    #print 'Exiting now, re-run using optimised parameters'
    #sys.exit()
    d_i = smoother.optimise_bandwidths()
    smoother.run_smoothing(config["r_min"], d_i)
    data = np.column_stack([smoother.grid, smoother.rates])
    np.savetxt(
        smoother_filename,
        data,
        #               np.column_stack([smoother.grid, smoother.rates]),
        delimiter=",",
        fmt=["%.4f", "%.4f", "%.8e"],
        header="longitude,latitude,rate")

    # Creating a basemap - input a cconfiguration and (if desired) a title
    title = 'Smoothed seismicity rate for learning \nperiod %i %i, K=%i, Mmin=%.1f' % (
        config['learning_start'], config['learning_end'], smoother.config['k'],
        smoother.config['mmin'])
    basemap1 = HMTKBaseMap(map_config, title)
    basemap1.m.drawmeridians(
        np.arange(map_config['min_lat'], map_config['max_lat'], 5))
    basemap1.m.drawparallels(
        np.arange(map_config['min_lon'], map_config['max_lon'], 5))
    # Adding the smoothed grip to the basemap
    sym = (2., 3., 'cx')
    x, y = basemap1.m(smoother.grid[:, 0], smoother.grid[:, 1])
    if smoother.config['mmin'] == 3.5:
        vmax = -1.0
    elif smoother.config['mmin'] == 4.0:
        vmax = -2.5
    else:
        vmax = -1.0
    basemap1.m.scatter(x,
                       y,
                       marker='s',
                       c=np.log10(smoother.rates),
                       cmap=plt.cm.coolwarm,
                       zorder=10,
                       lw=0,
                       vmin=-7.0,
                       vmax=vmax)
    basemap1.m.drawcoastlines(linewidth=1, zorder=50)  # Add coastline on top
    #basemap1.m.drawmeridians(np.arange(llat, ulat, 5))
    #basemap1.m.drawparallels(np.arange(llon, ulon, 5))
    plt.colorbar(label='Log10(Smoothed rate per cell)')
    #plt.colorbar()#label='log10(Smoothed rate per cell)')
    plt.legend()
    #basemap1.m.scatter(x, y, marker = 's', c = smoother.data[:,4], cmap = plt.cm.coolwarm, zorder=10)
    #basemap1.m.scatter([150],[22], marker='o')
    #basemap1.fig.show()

    #(smoother.data[0], smoother.data[1])
    #basemap1.add_catalogue(catalogue_depth_clean, erlay=False)
    figname = smoother_filename[:-4] + '_smoothed_rates_map.png'
    plt.savefig(figname)

    source_list = []
    #i=0
    min_mag = 4.5
    max_mag = 7.2
    # Read in data again to solve number fomatting issue in smoother.data
    # For some reason it just returns 0 for all a values
    #data = np.genfromtxt(smoother_filename, delimiter = ',', skip_header = 1)

    tom = PoissonTOM(
        50)  # Dummy temporal occurence model for building pt sources
    msr = Leonard2014_SCR()
    for j in range(len(data[:, 2])):
        identifier = 'ASS' + str(j) + '_' + str(run)
        name = 'Helmstetter' + str(j) + '_' + str(run)
        point = Point(data[j, 0], data[j, 1], 10)
        rate = data[j, 2]
        # Convert rate to a value
        aval = np.log10(rate) + config['bvalue'] * config["mmin"]

        mfd = TruncatedGRMFD(min_mag, max_mag, 0.1, aval, config['bvalue'])
        hypo_depth_dist = PMF([(0.5, 10.0), (0.25, 5.0), (0.25, 15.0)])
        nodal_plane_dist = PMF([(0.3, NodalPlane(0, 30, 90)),
                                (0.2, NodalPlane(90, 30, 90)),
                                (0.3, NodalPlane(180, 30, 90)),
                                (0.2, NodalPlane(270, 30, 90))])
        point_source = PointSource(identifier, name, 'Non_cratonic', mfd, 2,
                                   msr, 2.0, tom, 0.1, 20.0, point,
                                   nodal_plane_dist, hypo_depth_dist)
        source_list.append(point_source)

    mod_name = "Australia_Adaptive_K%i_b%.3f" % (smoother.config['k'],
                                                 smoother.config['bvalue'])
    nodes = list(map(obj_to_node, sorted(source_list)))
    source_model = Node("sourceModel", {"name": name}, nodes=nodes)
    with open(filename, 'wb') as f:
        nrml.write([source_model], f, '%s', xmlns=NAMESPACE)
Exemple #10
0

# In[ ]:

# Sort catalogue chronologically
catalogue.sort_catalogue_chronologically()
print 'Catalogue sorted chronologically!'


# In[ ]:

# Configure the limits of the map and the coastline resolution
map_config = {'min_lon': -80.0, 'max_lon': -30.0, 'min_lat': -37.0, 'max_lat': 14.0, 'resolution':'l'}

# Create a hmtk basemap
basemap1 = HMTKBaseMap(map_config, 'Earthquake Catalogue')
# Add a catalogue
basemap1.add_catalogue(catalogue)


# In[ ]:

# Limit the catalogue to the time period 1960 - 2012
valid_time = np.logical_and(catalogue.data['year'] >= 1900,
                            catalogue.data['year'] <= 2014)
catalogue.select_catalogue_events(valid_time)
plot_magnitude_time_density(catalogue, 0.2, 2.0)
print 'Catalogue now contains %s events' % catalogue.get_number_events()


# In[ ]:
Exemple #11
0
parser = nrmlSourceModelParser(area_source_file)
area_model = parser.read_file()

# <codecell>

# Configure the limits of the map and the coastline resolution
map_config = {
    'min_lon': -80.0,
    'max_lon': -30.0,
    'min_lat': -37.0,
    'max_lat': 14.0,
    'resolution': 'l'
}

# Create a hmtk basemap
basemap1 = HMTKBaseMap(map_config, 'Source Models')
# Add fault sources
#basemap1.add_source_model(fault_model, overlay=True)
# Add area sources
basemap1.add_source_model(area_model, area_border='b-')

# <codecell>

# Load in the catalogue
from hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueParser

input_file = 'data_input/hmtk_bsb2013.csv'
parser = CsvCatalogueParser(input_file)
catalogue = parser.read_file()
print 'Input complete: %s events in catalogue' % catalogue.get_number_events()
print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year,
Exemple #12
0
# <codecell>


# Import an Area Source Model
area_source_file = 'snippets/s03.xml'
parser = nrmlSourceModelParser(area_source_file)
area_model = parser.read_file()

# <codecell>

# Configure the limits of the map and the coastline resolution
map_config = {'min_lon': -80.0, 'max_lon': -30.0, 'min_lat': -37.0, 'max_lat': 14.0, 'resolution':'l'}

# Create a hmtk basemap
basemap1 = HMTKBaseMap(map_config, 'Source Models')
# Add fault sources
#basemap1.add_source_model(fault_model, overlay=True)
# Add area sources
basemap1.add_source_model(area_model, area_border='b-')

# <codecell>

# Load in the catalogue
from hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueParser

input_file = 'data_input/hmtk_bsb2013.csv'
parser = CsvCatalogueParser(input_file)
catalogue = parser.read_file()
print 'Input complete: %s events in catalogue' % catalogue.get_number_events()
print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year)
Exemple #13
0
import numpy as np
import matplotlib.pyplot as plt 
plt.xkcd()

from hmtk.plotting.mapping import HMTKBaseMap

dpi = 90

map_config = {'min_lon': -80.0, 'max_lon': -30.0, 'min_lat': -37.0, 'max_lat': 14.0, 'resolution':'l'}
basemap1 = HMTKBaseMap(map_config, '\gls{bsb2013} helmstetter2012 catalogues', dpi=dpi)



X = np.genfromtxt('cat', skip_header=True)

x = X[:,1]
y = X[:,2]
z = X[:,3]
#print min(z), max(z)
basemap1.add_size_scaled_points(y, x, z, alpha=0.3, 
                                colour='k', smin=0.5, sscale=2, 
                                facecolor='none', overlay=True,
                                label='learning')

Y = np.genfromtxt('TARG', skip_header=True)

#print Y[:10]

x = Y[:,1]
y = Y[:,2]
z = Y[:,3]