Exemple #1
0
 def test_calculate_taper_function_zero_case(self):
     '''
     Test case when g_function is 0.0.
     g_function is 0 when (obs - sel) < -100.0 * corner_mo
     This scenario seems to occur when the selected moment is 
     significantly greater than the corner magnitude
     '''
     self.assertAlmostEqual(
         0.0,
         calculate_taper_function(moment_function(5.0),
                                  moment_function(8.0),
                                  moment_function(6.0), self.beta))
 def test_calculate_taper_function_zero_case(self):
     '''
     Test case when g_function is 0.0.
     g_function is 0 when (obs - sel) < -100.0 * corner_mo
     This scenario seems to occur when the selected moment is
     significantly greater than the corner magnitude
     '''
     self.assertAlmostEqual(0.0, calculate_taper_function(
         moment_function(5.0),
         moment_function(8.0),
         moment_function(6.0),
         self.beta))
 def test_continuum_seismicity(self):
     '''
     Tests the function hmtk.strain.shift.Shift.continuum_seismicity - 
     the python implementation of the Subroutine Continuum Seismicity from
     the Fortran 90 code GSRM.f90
     '''
     self.strain_model = GeodeticStrain()
     # Define a simple strain model
     test_data = {'longitude': np.zeros(3, dtype=float),
                  'latitude': np.zeros(3, dtype=float),
                  'exx': np.array([1E-9, 1E-8, 1E-7]),
                  'eyy': np.array([5E-10, 5E-9, 5E-8]),
                  'exy': np.array([2E-9, 2E-8, 2E-7])}
     self.strain_model.get_secondary_strain_data(test_data)
     self.model = Shift([5.66, 6.66])
     threshold_moment = moment_function(np.array([5.66, 6.66]))
     
     expected_rate = np.array([[-14.43624419, -22.48168502],
                               [-13.43624419, -21.48168502],
                               [-12.43624419, -20.48168502]]) 
     np.testing.assert_array_almost_equal(
         expected_rate,
         np.log10(self.model.continuum_seismicity(
             threshold_moment,
             self.strain_model.data['e1h'],
             self.strain_model.data['e2h'],
             self.strain_model.data['err'],
             BIRD_GLOBAL_PARAMETERS['OSRnor'])))
Exemple #4
0
    def test_calculate_taper_function(self):
        '''
        Tests the function to calculate the taper part of the Tapered 
        Gutenberg & Richter model with exhaustive data set
        '''

        obs_mo = moment_function(np.arange(5.0, 9.5, 1.0))
        sel_mo = moment_function(np.arange(5.0, 9.5, 1.0))
        obs_data = np.zeros([len(obs_mo), len(sel_mo)], dtype=float)
        corner_mo = moment_function(8.5)
        for iloc, obs in enumerate(obs_mo):
            for jloc, sel in enumerate(sel_mo):
                obs_data[iloc, jloc] = calculate_taper_function(
                    obs, sel, corner_mo, self.beta)
        np.testing.assert_array_almost_equal(TAPER_FUNCTION_DATA,
                                             np.log10(obs_data))
Exemple #5
0
 def test_moment_function(self):
     '''
     Tests the simple function to implement the Hanks & Kanamori (1979)
     formula for an input magnitude
     '''
     expected_value = 18.05
     self.assertAlmostEqual(expected_value, log10(moment_function(6.0)))
Exemple #6
0
    def _get_base_rates(self, base_params):
        '''
        Defines the base moment rate that should be assigned to places of
        zero strain (i.e. Intraplate regions). In Bird et al (2010) this is
        taken as basic rate of Intraplate events in GCMT catalogue above the
        threshold magnitude

        :param dict base_params:
            Parameters needed for calculating the base rate. Requires:
                'CMT_EVENTS': The number of CMT events
                'area': Total area (km ^ 2) of the region class
                'CMT_duration': Duration of reference catalogue
                'CMT_moment': Moment rate from CMT catalogue
                'corner_mag': Corner magnitude of Tapered G-R for region
                'beta': Beta value of tapered G-R for distribution
        '''
        base_ipl_rate = base_params['CMT_EVENTS'] / (
            base_params['area'] * base_params['CMT_duration'])
        base_rate = np.zeros(self.number_magnitudes, dtype=float)

        for iloc in range(0, self.number_magnitudes):
            base_rate[iloc] = base_ipl_rate * calculate_taper_function(
                base_params['CMT_moment'],
                self.threshold_moment[iloc],
                moment_function(base_params['corner_mag']),
                base_params['beta'])
        return base_rate
Exemple #7
0
    def test_continuum_seismicity(self):
        # Tests the function hmtk.strain.shift.Shift.continuum_seismicity -
        # the python implementation of the Subroutine Continuum Seismicity
        # from the Fortran 90 code GSRM.f90
        self.strain_model = GeodeticStrain()
        # Define a simple strain model
        test_data = {
            'longitude': np.zeros(3, dtype=float),
            'latitude': np.zeros(3, dtype=float),
            'exx': np.array([1E-9, 1E-8, 1E-7]),
            'eyy': np.array([5E-10, 5E-9, 5E-8]),
            'exy': np.array([2E-9, 2E-8, 2E-7])
        }
        self.strain_model.get_secondary_strain_data(test_data)
        self.model = Shift([5.66, 6.66])
        threshold_moment = moment_function(np.array([5.66, 6.66]))

        expected_rate = np.array([[-14.43624419, -22.48168502],
                                  [-13.43624419, -21.48168502],
                                  [-12.43624419, -20.48168502]])
        np.testing.assert_array_almost_equal(
            expected_rate,
            np.log10(
                self.model.continuum_seismicity(
                    threshold_moment, self.strain_model.data['e1h'],
                    self.strain_model.data['e2h'],
                    self.strain_model.data['err'],
                    BIRD_GLOBAL_PARAMETERS['OSRnor'])))
Exemple #8
0
    def _get_base_rates(self, base_params):
        '''
        Defines the base moment rate that should be assigned to places of
        zero strain (i.e. Intraplate regions). In Bird et al (2010) this is
        taken as basic rate of Intraplate events in GCMT catalogue above the
        threshold magnitude

        :param dict base_params:
            Parameters needed for calculating the base rate. Requires:
                'CMT_EVENTS': The number of CMT events
                'area': Total area (km ^ 2) of the region class
                'CMT_duration': Duration of reference catalogue
                'CMT_moment': Moment rate from CMT catalogue
                'corner_mag': Corner magnitude of Tapered G-R for region
                'beta': Beta value of tapered G-R for distribution
        '''
        base_ipl_rate = base_params['CMT_EVENTS'] / (
            base_params['area'] * base_params['CMT_duration'])
        base_rate = np.zeros(self.number_magnitudes, dtype=float)

        for iloc in range(0, self.number_magnitudes):
            base_rate[iloc] = base_ipl_rate * calculate_taper_function(
                base_params['CMT_moment'],
                self.threshold_moment[iloc],
                moment_function(base_params['corner_mag']),
                base_params['beta'])
        return base_rate
 def test_moment_function(self):
     '''
     Tests the simple function to implement the Hanks & Kanamori (1979)
     formula for an input magnitude
     '''
     expected_value = 18.05
     self.assertAlmostEqual(expected_value,
                            log10(moment_function(6.0)))
    def test_calculate_taper_function(self):
        '''
        Tests the function to calculate the taper part of the Tapered
        Gutenberg & Richter model with exhaustive data set
        '''

        obs_mo = moment_function(np.arange(5.0, 9.5, 1.0))
        sel_mo = moment_function(np.arange(5.0, 9.5, 1.0))
        obs_data = np.zeros([len(obs_mo), len(sel_mo)], dtype=float)
        corner_mo = moment_function(8.5)
        for iloc, obs in enumerate(obs_mo):
            for jloc, sel in enumerate(sel_mo):
                obs_data[iloc, jloc] = calculate_taper_function(obs,
                                                                sel,
                                                                corner_mo,
                                                                self.beta)
        np.testing.assert_array_almost_equal(TAPER_FUNCTION_DATA,
                                             np.log10(obs_data))
Exemple #11
0
    def __init__(self,
                 minimum_magnitude,
                 base_params=None,
                 region_parameter_file=None):
        '''
        Instantiate the class, retreive minimum moments, base rates and
        regionalisation informaton

        :param float/list/np.ndarray minimum_magnitude:
            Target magnitudes for calculating the activity rates

        :param dict base_params:
            Regionalisation parameters for the background region type (in this
            case the Bird et al. Intraplate class

        :param str region_parameter_file:
            To overwrite the default Bird et al (2007) classifcations the
            regionalisation can be defined in a separate Yaml file
        '''
        base_params = base_params or IPL_PARAMS
        self.strain = None
        if isinstance(minimum_magnitude, float):
            self.target_magnitudes = np.array([minimum_magnitude], dtype=float)
        elif isinstance(minimum_magnitude, list):
            self.target_magnitudes = np.array(minimum_magnitude, dtype=float)
        elif isinstance(minimum_magnitude, np.ndarray):
            self.target_magnitudes = minimum_magnitude
        else:
            raise ValueError('Minimum magnitudes must be float, list or array')

        self.number_magnitudes = len(self.target_magnitudes)
        self.threshold_moment = moment_function(self.target_magnitudes)
        # Get the base rate from the input parameters
        self.base_rate = self._get_base_rates(base_params)
        # If a regionalisation parameter file is defined then read
        # regionalisation from there - otherwise use Bird regionalisation
        if region_parameter_file:
            self.regionalisation = yaml.load(open(region_parameter_file, 'rt'))
        else:
            self.regionalisation = BIRD_GLOBAL_PARAMETERS
Exemple #12
0
    def __init__(self, minimum_magnitude, base_params=None,
                 region_parameter_file=None):
        '''
        Instantiate the class, retreive minimum moments, base rates and
        regionalisation informaton

        :param float/list/np.ndarray minimum_magnitude:
            Target magnitudes for calculating the activity rates

        :param dict base_params:
            Regionalisation parameters for the background region type (in this
            case the Bird et al. Intraplate class

        :param str region_parameter_file:
            To overwrite the default Bird et al (2007) classifcations the
            regionalisation can be defined in a separate Yaml file
        '''
        base_params = base_params or IPL_PARAMS
        self.strain = None
        if isinstance(minimum_magnitude, float):
            self.target_magnitudes = np.array([minimum_magnitude], dtype=float)
        elif isinstance(minimum_magnitude, list):
            self.target_magnitudes = np.array(minimum_magnitude, dtype=float)
        elif isinstance(minimum_magnitude, np.ndarray):
            self.target_magnitudes = minimum_magnitude
        else:
            raise ValueError('Minimum magnitudes must be float, list or array')

        self.number_magnitudes = len(self.target_magnitudes)
        self.threshold_moment = moment_function(self.target_magnitudes)
        # Get the base rate from the input parameters
        self.base_rate = self._get_base_rates(base_params)
        # If a regionalisation parameter file is defined then read
        # regionalisation from there - otherwise use Bird regionalisation
        if region_parameter_file:
            self.regionalisation = yaml.load(open(region_parameter_file, 'rt'))
        else:
            self.regionalisation = BIRD_GLOBAL_PARAMETERS
Exemple #13
0
 def test_moment_magnitude_function(self):
     '''
     Tests the Hanks & Kanamori (1979) formula  for an input moment
     '''
     self.assertAlmostEqual(6.0,
                            moment_magnitude_function(moment_function(6.0)))
Exemple #14
0
                          'OCB': OCB_PARAMS,
                          'SUB': SUB_PARAMS,
                          'IPL': IPL_PARAMS}

# This value of 25.7474 is taken from Bird's analysis -

# TODO this needs to be generalised if integrating w/Modeller
CMT_DURATION_S = 25.7474 * SECS_PER_YEAR


# Apply SI conversion adjustments from Bird (2007)'s code
# TODO This is ugly - reconsider this (maybe require only inputs in SI)
for reg_type in BIRD_GLOBAL_PARAMETERS.keys():
    reg = BIRD_GLOBAL_PARAMETERS[reg_type]

    reg['corner_moment'] = moment_function(reg['corner_mag'])
    if reg_type is not 'IPL':
        reg['CMT_pure_event_rate'] = reg['CMT_EVENTS'] / CMT_DURATION_S
        reg['length'] = 1000.0 * reg['length']
        reg['velocity'] = (reg['velocity'] * 0.001) / SECS_PER_YEAR
        reg['assumed_dip'] = reg['assumed_dip'] * RADIAN_CONV
        reg['assumed_mu'] = reg['assumed_mu'] * 1.0E9
        reg['coupled_thickness'] = reg['coupled_thickness'] * 1000.
        reg['lithosphere'] = reg['lithosphere'] * 1000.
    else:
        reg['CMT_pure_event_rate'] = reg['CMT_EVENTS'] / reg['CMT_duration']
    BIRD_GLOBAL_PARAMETERS[reg_type] = reg


STRAIN_VARIABLES = ['exx', 'eyy', 'exy', 'e1h', 'e2h', 'err', '2nd_inv',
                    'dilatation']
 def test_moment_magnitude_function(self):
     '''
     Tests the Hanks & Kanamori (1979) formula  for an input moment
     '''
     self.assertAlmostEqual(6.0,
                            moment_magnitude_function(moment_function(6.0)))
Exemple #16
0
                          'OCB': OCB_PARAMS,
                          'SUB': SUB_PARAMS,
                          'IPL': IPL_PARAMS}

# This value of 25.7474 is taken from Bird's analysis -

# TODO this needs to be generalised if integrating w/Modeller
CMT_DURATION_S = 25.7474 * SECS_PER_YEAR


# Apply SI conversion adjustments from Bird (2007)'s code
# TODO This is ugly - reconsider this (maybe require only inputs in SI)
for reg_type in BIRD_GLOBAL_PARAMETERS:
    reg = BIRD_GLOBAL_PARAMETERS[reg_type]

    reg['corner_moment'] = moment_function(reg['corner_mag'])
    if reg_type is not 'IPL':
        reg['CMT_pure_event_rate'] = reg['CMT_EVENTS'] / CMT_DURATION_S
        reg['length'] = 1000.0 * reg['length']
        reg['velocity'] = (reg['velocity'] * 0.001) / SECS_PER_YEAR
        reg['assumed_dip'] = reg['assumed_dip'] * RADIAN_CONV
        reg['assumed_mu'] = reg['assumed_mu'] * 1.0E9
        reg['coupled_thickness'] = reg['coupled_thickness'] * 1000.
        reg['lithosphere'] = reg['lithosphere'] * 1000.
    else:
        reg['CMT_pure_event_rate'] = reg['CMT_EVENTS'] / reg['CMT_duration']
    BIRD_GLOBAL_PARAMETERS[reg_type] = reg


STRAIN_VARIABLES = ['exx', 'eyy', 'exy', 'e1h', 'e2h', 'err', '2nd_inv',
                    'dilatation']