detector = buildDetector() # Define the codec and create VideoWriter object out = cv2.VideoWriter('results.avi', -1, 15.0, (568, 640), True) while (True): i += 1 file_path = "frames_" + "%04d" % i + ".png" print file_path frame = cv2.imread(file_path, 1) if frame == None: break #Find keypoints keypoints, _ = findHolds(frame, detector) #colors = findColors(frame,keypoints) frameWithKeypoints = cv2.drawKeypoints(frame, keypoints, -1, [0, 0, 255]) results = np.concatenate((frame, frameWithKeypoints), axis=0) print results.shape out.write(results) cv2.imshow('frame', results) if cv2.waitKey(1) & 0xFF == ord('q'): break #cap.release()
"""Example""" import holdDetector as hd #Open dialog to select image img = hd.openImage() # Set initial detector parameters hd.buildDetector(minArea = 500) # Finds each hold. Returns keypoints for each hold # and the points that define the contours of each hold holds, contours = hd.findHolds(img) #Finds a color associated with each keypoint colors = hd.findColors(img,holds) #Draws keypoints onto image and plots colors in 3D space hd.draw(img,holds) hd.plotColors(colors)
shape = (x,y) # Open VideoWriter object #codec = cv2.cv.CV_FOURCC('Y','V','1','2') out = cv2.VideoWriter(path[:-4] + '-out.avi',-1, 30.0, shape,True) while(cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() if not ret: break # Find keypoints keypoints, hulls = findHolds(frame) frameWithKeypoints = cv2.drawKeypoints(frame,keypoints,-1,[0,0,255]) #cv2.drawContours(frame,hulls,-1,[255,0,0]) results = np.concatenate((frame, frameWithKeypoints), axis=axis) # Write image to video out out.write(results) cv2.imshow('frame',results) if cv2.waitKey(1) & 0xFF == ord('q'): break
cap = cv2.VideoCapture(0) # Define the codec and create VideoWriter object out = cv2.VideoWriter("webcam\\"+relpath,-1, 15.0, (640*2, 960/2),True) detector = buildDetector() while (cap.isOpened()): start = time.time() # Pull in frame from webcam retval, frame = cap.read() if retval == False: break #Find keypoints keypoints, _ = findHolds(frame,detector) #Draw Keypoints onto frame frameWithKeypoints = cv2.drawKeypoints(frame,keypoints,-1,[0,0,255]) #Display frame with keypoint frame side by side. results = np.concatenate((frame, frameWithKeypoints), axis=1) # Write image to video out out.write(results) #Display for user. cv2.imshow('frame',results) if cv2.waitKey(1) & 0xFF == ord('q'): break
while(cap.isOpened()): mask2 = np.zeros((c,r)) mask3 = np.zeros((c,r)) # Capture frame-by-frame ret, frame = cap.read() if not ret: break #Find keypoints keypoints, _ = findHolds(frame) for key in keypoints: #mask[key.pt] =+25 cv2.circle(mask2,(int(key.pt[1]),int(key.pt[0])),5,2,-1) mask += mask[mask > 0] = mask[mask > 0] - 1 mask3 = mask2 > 200 """ for r,row in enumerate(mask): for c,col in enumerate(row): if mask[r,c] > 1: cv2.circle(frame,(r,c),10,[0,0,255],-1)