Exemple #1
0
def test_AlphaModelholo_likelihood():
    holo = get_example_data('image0001')
    s = Sphere(
        prior.Gaussian(.5, .1), prior.Gaussian(1.6, .1),
        (prior.Gaussian(5, 1), prior.Gaussian(5, 1), prior.Gaussian(5, 1)))
    model = AlphaModel(s, alpha=prior.Gaussian(.7, .1), noise_sd=.01)
    assert_pickle_roundtrip(model)
Exemple #2
0
    def __new__(self, scatterer, calc_func, medium_index=None,
                 illum_wavelen=None, illum_polarization=None, theory='auto',
                 alpha=None, constraints=[]):
        if calc_func is calc_holo:
            fit_warning('hp.inference.AlphaModel', 'Model')
            if alpha is None:
                alpha = 1.0
            model = AlphaModel(scatterer, alpha, None, medium_index,
                        illum_wavelen, illum_polarization, theory, constraints)
        elif alpha is None:
            fit_warning('hp.inference.ExactModel','Model')
            model = ExactModel(scatterer, calc_func, None, medium_index,
                        illum_wavelen, illum_polarization, theory, constraints)
        else:
            raise ValueError("Cannot interpret alpha for non-hologram scattering \
                            calculations")

        def residual(pars, data):
            return model._residuals(pars, data, 1/np.sqrt(2)).flatten()
        setattr(model, '_calc', model.forward)
        setattr(model, 'residual', residual)
        def get_alpha(pars):
            try:
                return model._get_parameter('alpha', pars)
            except MissingParameter:
                return 1.0
        setattr(model, 'get_alpha', get_alpha)
        return model
Exemple #3
0
 def test_alpha_subset_tempering(self):
     holo = normalize(get_example_data('image0001'))
     scat = Sphere(r=0.65e-6, n=1.58, center=[5.5e-6, 5.8e-6, 14e-6])
     mod = AlphaModel(scat, noise_sd=.1, alpha=prior.Gaussian(0.7, 0.1))
     strat = TemperedStrategy(nwalkers=4, nsamples=10, stages=1,
                              stage_len=10, parallel=None, seed=40)
     with warnings.catch_warnings():
         warnings.simplefilter('ignore')
         inference_result = strat.sample(mod, holo)
     desired_alpha = np.array([0.650348])
     assert_allclose(inference_result._parameters, desired_alpha, rtol=5e-3)
Exemple #4
0
def make_default_model(base_scatterer, fitting_parameters=None):
    if fitting_parameters is None:
        fitting_parameters = base_scatterer.parameters.keys()
    scatterer = parameterize_scatterer(base_scatterer, fitting_parameters)
    alpha_prior = Uniform(0, 1, guess=0.7, name='alpha')
    return AlphaModel(scatterer, noise_sd=1, alpha=alpha_prior)