Exemple #1
0
    def plot_output_vs_time(self, bnum_it=None):
        import holoviews as hv
        from holoviews.operation import decimate
        import pandas as pd, numpy as np

        def byte_to_color(idx):
            return hv.Palette.colormaps['Category20'](idx / 16.0)

        if bnum_it is None:
            bnum_it = range(16)
        a = []
        b = []
        hv.extension('bokeh')
        for i in range(16):
            data = self.output_vs_time(i)
            a.append(np.array(data[1]))
            b.append(np.array(data[2]))
            b.append(np.array(data[3]))

        #pda = pd.DataFrame(a).transpose().rename(str, axis='columns')
        #pdb = pd.DataFrame(b).transpose().rename(str, axis='columns')
        curve = hv.Curve(b[i], "Sample").options(color='black').options(
            title="Correlation Vs. Time")
        for i in range(1, len(b)):
            curve *= hv.Curve(b[i]).options(color='black',
                                            width=900,
                                            height=600)

        for i in bnum_it:
            curve *= hv.Curve(a[i]).options(color=byte_to_color(i),
                                            width=900,
                                            height=600)
        return decimate(curve)
Exemple #2
0
    def __call__(self, dset, **params):

        self.p = ParamOverrides(self, params)

        if self.p.vdim is None:
            vdim = dset.vdims[0].name
        else:
            vdim = self.p.vdim

        pts = hv.util.Dynamic(dset, operation=skypoints,
                              streams=[self.p.filter_stream])

        if self.p.aggregator == 'mean':
            aggregator = ds.mean(vdim)
        elif self.p.aggregator == 'std':
            aggregator = ds.std(vdim)
        elif self.p.aggregator == 'count':
            aggregator = ds.count()


        decimate_opts = dict(plot={'tools': ['hover',
                                             'box_select']},
                             style={'alpha': 0,
                                    'size': self.p.decimate_size,
                                    'nonselection_alpha': 0})

        decimated = decimate(pts).opts(**decimate_opts)
        raster_ = rasterize(pts, aggregator=aggregator)
        color_gadget = raster_.opts(cmap=Viridis[256], colorbar=True, alpha=0)
        sky_shaded = shade(raster_, cmap=viridis)

        plot = dynspread(sky_shaded) * decimated * color_gadget

        return plot.options(bgcolor="black", responsive=True, min_height=100)
Exemple #3
0
    def box_chooser(self, **kwargs):
        '''
        Visual tool for choosing rectangle shaped blocks in mask.
        :param kwargs: array, if you want to pre select pixels,
                       initialize_mask, True if you want to initialize mask.
                                        True also Overrides array.
                                        False does nothing and overrides
                                        nothing
                       initialize_value, what value you want to use in
                                        initialisation. Used if initialize_mask
                                        is True. Fallback value is 0.
        :return: hv.Object
        '''
        # cube.test_for_not_none()
        wid = len(self._obj.coords[self._obj.M.dims[1]])
        hei = len(self._obj.coords[self._obj.M.dims[0]])
        # dep = len(cube.band)

        self.__do_mask_changes(**kwargs)
        all_pixels = np.array(list(itertools.product(range(wid), range(hei))))
        mask_dims = self._obj.M.dims.copy()
        mask_dims.reverse()
        points = hv.Points(all_pixels, kdims=mask_dims)
        # print(points)
        ds_attrs = self._make_dataset_opts()
        dataset3d = hv.Dataset(**ds_attrs)
        box = hv.streams.BoundsXY(source=points, bounds=(0, 0, 0, 0))
        bounds = hv.DynamicMap(lambda bounds: hv.Bounds(bounds), streams=[box])
        third_dim_list = list(self._obj.dims)
        third_dim_list.remove(mask_dims[0])
        third_dim_list.remove(mask_dims[1])
        layout = decimate(points) * \
                 dataset3d.to(hv.Image,
                              mask_dims,
                              'Value',
                              third_dim_list) * \
                 bounds + \
                 decimate(
                     hv.DynamicMap(
                         lambda bounds: hv.Points(
                             self._record_selections(bounds, points),
                             kdims=mask_dims
                         ),
                         streams=[box]
                     )
                 )
        return layout
Exemple #4
0
    def jtdp(self, x_range, y_range, **kwargs):

        pointdec = hv.Points(df,
                             kdims=['X_CORD', 'Y_CORD'],
                             vdims=['EVENT_COUNT', 'FEEDER_ID'])
        selecteddec = pointdec.select(EventType=self.plot,
                                      EVENT_COUNT=self.numEvents)
        dm2 = decimate(
            selecteddec, x_range=x_range, y_range=y_range, dynamic=False
        ).opts(
            style={'Points': dict(alpha=0.0, color='blue', size=self.maxpix)})
        return dm2
def update_map(attr, old, new):
    global selection, vizual, gvplot, hvplot, heatmap, feats, points, world_map, range_slider, controls3, max_cur_feature, min_cur_feature, temp_feats
    max_cur_feature = temp_feats[choice.value].max()
    min_cur_feature = temp_feats[choice.value].min()
    range_slider = RangeSlider(start=min_cur_feature,
                               end=max_cur_feature,
                               value=(min_cur_feature, max_cur_feature),
                               step=(max_cur_feature - min_cur_feature) / 20,
                               title="Feature_range")
    range_slider.on_change('value', update_map_val)
    controls3 = widgetbox([range_slider], width=250)
    new_loc_feats = temp_feats.loc[
        (temp_feats[choice.value] < range_slider.value[1])
        & (temp_feats[choice.value] > range_slider.value[0])]
    feats = gv.Dataset(new_loc_feats, kdims=['Longitude', 'Latitude', new])
    points = feats.to(gv.Points, ['Longitude', 'Latitude'], [new])
    if len(new_loc_feats) <= 20000:
        world_map = gv.Overlay(tiles * points).options(
            'Points',
            size=5,
            cmap='viridis',
            colorbar=True,
            tools=TOOLS,
            color_index=2,
            width=900,
            height=800,
            global_extent=True,
            colorbar_opts={'scale_alpha': 0.5},
            fill_alpha=0.5,
            line_alpha=0.5)
    else:
        world_map = decimate(gv.Points(points), max_samples=20000).options(
            'Points',
            size=5,
            cmap='viridis',
            colorbar=True,
            tools=TOOLS,
            color_index=2,
            width=900,
            height=800,
            global_extent=True,
            colorbar_opts={'scale_alpha': 0.5},
            fill_alpha=0.5,
            line_alpha=0.5)
    selection = hv.streams.Selection1D(source=world_map)
    heatmap = hv.DynamicMap(selected_points, streams=[selection])
    zoom = hv.DynamicMap(test_bounds, streams=[box])
    hvplot = renderer.get_plot(heatmap, curdoc())
    gvplot = renderer.get_plot(world_map, curdoc())
    bvplot = renderer.get_plot(zoom, curdoc())
    vizual.children[1].children = [gvplot.state, hvplot.state, bvplot.state]
Exemple #6
0
    def gen_real_hover(self, resetting, x_range, y_range):
        if resetting:
            x_range = self.xrange
            y_range = self.yrange1

        opts_hover_time = dict(alpha=0,
                               hover_alpha=0.2,
                               fill_alpha=0,
                               framewise=True,
                               color='r')
        hover = self.time_hover_gen(self.time_df,
                                    vdims='Real',
                                    x_range=x_range)
        return decimate(hover, max_samples=self.max_samples,
                        dynamic=False).opts(**opts_hover_time)
Exemple #7
0
 def gen_imag_hover(self, resetting, x_range, y_range):
     # print("gen_imag_hover {}".format(resetting))
     if resetting:
         x_range = self.xrange
         y_range = self.yrange1
     opts_hover_time = dict(alpha=0,
                            hover_alpha=0.2,
                            fill_alpha=0,
                            framewise=True,
                            color='r')
     hover = self.time_hover_gen(self.time_df,
                                 vdims='Imag',
                                 x_range=x_range)
     return decimate(
         hover, max_samples=self.max_samples,
         dynamic=False).opts(**opts_hover_time)  #, dynamic=True)
def update_map_val(attr, old, new):
    global selection, vizual, gvplot, hvplot, heatmap, feats, points, world_map, temp_feats
    max_cur_feature = loc_feats[choice.value].max()
    min_cur_feature = loc_feats[choice.value].min()
    new_loc_feats = temp_feats.loc[(temp_feats[choice.value] <= new[1])
                                   & (temp_feats[choice.value] >= new[0])]
    feats = gv.Dataset(new_loc_feats,
                       kdims=['Longitude', 'Latitude', choice.value])
    points = feats.to(gv.Points, ['Longitude', 'Latitude'], [choice.value])
    if len(new_loc_feats) <= 20000:
        world_map = gv.Points(points).options(
            'Points',
            size=5,
            cmap='viridis',
            colorbar=True,
            tools=TOOLS,
            color_index=2,
            width=900,
            height=800,
            colorbar_opts={'scale_alpha': 0.5},
            fill_alpha=0.5,
            line_alpha=0.5)
    else:
        world_map = decimate(gv.Points(points), max_samples=20000).options(
            'Points',
            size=5,
            cmap='viridis',
            colorbar=True,
            tools=TOOLS,
            color_index=2,
            width=900,
            height=800,
            colorbar_opts={'scale_alpha': 0.5},
            fill_alpha=0.5,
            line_alpha=0.5)
    selection = hv.streams.Selection1D(source=world_map)
    heatmap = hv.DynamicMap(selected_points, streams=[selection])
    box = hv.streams.BoundsXY(source=world_map)
    zoom = hv.DynamicMap(test_bounds, streams=[box])
    hvplot = renderer.get_plot(heatmap, curdoc())
    gvplot = renderer.get_plot(world_map, curdoc())
    bvplot = renderer.get_plot(zoom, curdoc())
    vizual.children[1].children = [gvplot.state, hvplot.state, bvplot.state]
Exemple #9
0
 def point_chooser(self, **kwargs):
     '''
     Visual tool for choosing points in the mask.
     :param kwargs: array, if you want to pre select pixels,
                    initialize_mask, True if you want to initialize mask.
                                     True also Overrides array.
                                     False does nothing and overrides
                                     nothing
                    initialize_value, what value you want to use in
                                     initialisation. Used if initialize_mask
                                     is True. Fallback value is 0.
     :return: hv.Object
     '''
     self.__do_mask_changes(**kwargs)
     tap = streams.Tap(rename={
         'x': 'first_coord',
         'y': 'second_coord'
     },
                       transient=True)
     ds_attrs = self._make_dataset_opts()
     dataset3d = hv.Dataset(**ds_attrs)
     mask_dims = self._obj.M.dims.copy()
     mask_dims.reverse()
     layout = dataset3d.to(hv.Image,
                           mask_dims,
                           'Value',
                           self._obj.M.no_mask_dims) * \
              decimate(
                  hv.DynamicMap(
                      lambda first_coord, second_coord:
                      hv.Points(self._record_taps(first_coord,
                                                  second_coord),
                                kdims=mask_dims),
                      streams=[tap]
                  )
              )
     return layout
Exemple #10
0
    def __call__(self, dset, **params):
        self.p = ParamOverrides(self, params)

        if self.p.vdim is None:
            vdim = dset.vdims[0].name
        else:
            vdim = self.p.vdim

        pts = hv.util.Dynamic(dset,
                              operation=skypoints,
                              streams=[self.p.filter_stream])

        if self.p.aggregator == 'mean':
            aggregator = ds.mean(vdim)
        elif self.p.aggregator == 'std':
            aggregator = ds.std(vdim)
        elif self.p.aggregator == 'count':
            aggregator = ds.count()

        kwargs = dict(cmap=cc.palette[self.p.cmap], aggregator=aggregator)
        if self.p.width is not None:
            kwargs.update(width=self.p.width, height=self.p.height)


#                          streams=[hv.streams.RangeXY])

        decimate_opts = dict(plot={'tools': ['hover', 'box_select']},
                             style={
                                 'alpha': 0,
                                 'size': self.p.decimate_size,
                                 'nonselection_alpha': 0
                             })

        decimated = decimate(pts).opts(**decimate_opts)
        sky_shaded = datashade(pts, **kwargs)

        return dynspread(sky_shaded) * decimated
Exemple #11
0
def produce_timehistory(doc, peak, peakTS):
    # Streams

    # See if you can limit the buffer
    b_th_peak = Buffer(pd.DataFrame({
        'peak': [],
        'lowerbound': [],
        'higherbound': []
    }),
                       length=1000000)
    b_th_peak_std = Buffer(pd.DataFrame({
        'peak': [],
        'lowerbound': [],
        'higherbound': []
    }),
                           length=1000000)

    s_spikes = Buffer(pd.DataFrame({'y': []}), length=1000000)
    s_labels = Buffer(pd.DataFrame({'x': [], 'y': []}), length=1000000)
    s_spikes_end = Buffer(pd.DataFrame({'y': []}), length=1000000)

    #s_spikes = hv.streams.Stream.define('df', df=pd.DataFrame({'location':[], 'y':[]}))()
    #s_labels = hv.streams.Stream.define('df', df=pd.DataFrame({'x':[], 'y':[], 'labels':[]}))()

    # Generate dynamic map

    plot_peak_b = hv.DynamicMap(
        partial(hv.Points, kdims=['index', 'peak']),
        streams=[b_th_peak
                 ]).options(width=1000,
                            finalize_hooks=[apply_formatter
                                            ]).redim.label(index='Time in UTC')

    # HoloViews seems to currently have a bug with hv.Spread with buffers, once it is fixed
    # we can try to implement hv.spread instead of this
    plot_peak_std_low = hv.DynamicMap(
        partial(hv.Curve, kdims=['index', 'lowerbound']),
        streams=[b_th_peak
                 ]).options(line_alpha=0.5,
                            line_color='gray').redim.label(index='Time in UTC')

    plot_peak_std_high = hv.DynamicMap(
        partial(hv.Curve, kdims=['index', 'higherbound']),
        streams=[b_th_peak
                 ]).options(line_alpha=0.5,
                            line_color='gray').redim.label(index='Time in UTC')

    #hvSpikes = hv.DynamicMap(gen_spikes, streams=[s_spikes])
    #hvLabels = hv.DynamicMap(gen_labels, streams=[s_labels])
    hvSpikes = hv.DynamicMap(partial(hv.Spikes),
                             streams=[s_spikes]).options(apply_ranges=False,
                                                         color='green')
    hvSpikes_end = hv.DynamicMap(hv.Spikes,
                                 streams=[s_spikes_end
                                          ]).options(apply_ranges=False,
                                                     color='red')
    hvLabels = hv.DynamicMap(partial(hv.Labels, kdims=['x', 'y']),
                             streams=[s_labels]).options(apply_ranges=False)

    #testing = datashade(plot_ipm_b).options(width = 1000)
    test1 = datashade(plot_peak_std_low,
                      streams=[hv.streams.PlotSize],
                      normalization='linear').options(
                          width=1000, finalize_hooks=[apply_formatter])
    #.opts(norm=dict(framewise=True))
    test2 = datashade(plot_peak_std_high,
                      streams=[hv.streams.PlotSize],
                      normalization='linear')
    #.opts(norm=dict(framewise=True))
    pointTest = decimate(plot_peak_b,
                         streams=[hv.streams.PlotSize],
                         normalization='linear')

    # Scrolling after pausing the graph seems to cause Parameter name clashes for keys: {'height', 'width', 'scale'} error!

    #plot = (plot_ipm_b*plot_ipm_std_low*plot_ipm_std_high)
    plot = (pointTest * test1 * test2 * hvSpikes * hvLabels * hvSpikes_end)
    #plot=hvSpikes*hvLabels

    # Use bokeh to render plot
    hvplot = renderer.get_plot(plot, doc)

    switch_key = 'peak_8'
    start = [1534280820000, 1534271880000]
    end = [1534279380000, 1534272000000]
    labels = ['Test 1', 'Test 2']
    medianCheck = 0

    # For pushing in data, maybe cut off first 119 points to get rid of those weird extremes
    def push_data(stream):

        TS_key = switch_key + '_TS'
        data = list(peak[switch_key])
        timestamp = list(peakTS[TS_key])

        times = [1000 * time for time in timestamp]
        dataSeries = pd.Series(data, index=times)

        zipped = basic_event_builder(peak=dataSeries)
        median = zipped.rolling(120, min_periods=1).median()
        std = zipped.rolling(120, min_periods=1).std()
        lowerbound = median - std
        higherbound = median + std
        df = pd.DataFrame({
            'peak': median['peak'],
            'lowerbound': lowerbound['peak'],
            'higherbound': higherbound['peak']
        })

        stream.send(df)

    def push_spikes(stream, position):

        #start = [1534279200000, 1534201350000]
        doubledData = [val for val in position for _ in (0, 1)]
        height = [1000, -1000]
        heightList = height * len(position)

        df = pd.DataFrame({'location': doubledData, 'y': heightList})
        df = df.set_index('location')
        df.index.name = None
        stream.send(df)

    def push_labels(stream, labels, start):

        nonlocal medianCheck

        # Need to clear the buffers somehow to stop weird overlapping
        height = [1]
        data = list(peak[switch_key])
        dataSeries = pd.Series(data)
        median = [dataSeries.median()]

        if median == medianCheck:
            pass
        else:

            heightList = median * len(start)

            df = pd.DataFrame({'x': start, 'y': heightList, 'labels': labels})
            df = df.set_index('labels')
            df.index.name = None
            with util.disable_constant(s_labels):
                s_labels.data = s_labels.data.iloc[:0]
            stream.send(pd.DataFrame({'x': [], 'y': []}))
            stream.send(df)
            medianCheck = median

    def clear_buffer():
        """
        Modified version of hv.buffer.clear() since original appears to be
        buggy
        
        Clear buffer/graph whenever switch is toggled
        
        """

        nonlocal b_th_peak, b_th_peak_std, s_labels

        with util.disable_constant(b_th_peak) and util.disable_constant(
                b_th_peak_std) and util.disable_constant(s_labels):

            b_th_peak.data = b_th_peak.data.iloc[:0]
            b_th_peak_std.data = b_th_peak_std.data.iloc[:0]
            s_labels.data = s_labels.data.iloc[:0]

        b_th_peak.send(
            pd.DataFrame({
                'peak': [],
                'lowerbound': [],
                'higherbound': []
            }))
        b_th_peak_std.send(
            pd.DataFrame({
                'peak': [],
                'lowerbound': [],
                'higherbound': []
            }))
        s_labels.send(pd.DataFrame({'x': [], 'y': []}))

    def switch(attr, old, new):
        """
        Update drop down menu value
        
        """

        nonlocal switch_key
        switch_key = select.value
        clear_buffer()
        print("Yes!")

    def play_graph():
        """
        Provide play and pause functionality to the graph

        """

        nonlocal callback_id_th_b, cb_id_spikes, cb_id_labels, cb_id_spikes_end
        if startButton.label == '► Play':
            startButton.label = '❚❚ Pause'
            callback_id_th_b = doc.add_periodic_callback(
                partial(push_data, stream=b_th_peak), 1000)

            cb_id_spikes = doc.add_periodic_callback(
                partial(push_spikes, stream=s_spikes, position=start), 1000)

            cb_id_labels = doc.add_periodic_callback(
                partial(push_labels,
                        stream=s_labels,
                        labels=labels,
                        start=start), 1000)

            cb_id_spikes_end = doc.add_periodic_callback(
                partial(push_spikes, stream=s_spikes_end, position=end), 1000)
        else:
            startButton.label = '► Play'
            doc.remove_periodic_callback(callback_id_th_b)

            doc.remove_periodic_callback(cb_id_spikes)
            doc.remove_periodic_callback(cb_id_labels)
            doc.remove_periodic_callback(cb_id_spikes_end)

    select = Select(title="Peak:", value="peak_8", options=list(peak))
    select.on_change('value', switch)

    startButton = Button(label='❚❚ Pause')
    startButton.on_click(play_graph)

    callback_id_th_b = doc.add_periodic_callback(
        partial(push_data, stream=b_th_peak), 1000)

    cb_id_labels = doc.add_periodic_callback(
        partial(push_labels, stream=s_labels, labels=labels, start=start),
        1000)

    cb_id_spikes = doc.add_periodic_callback(
        partial(push_spikes, stream=s_spikes, position=start), 1000)

    cb_id_spikes_end = doc.add_periodic_callback(
        partial(push_spikes, stream=s_spikes_end, position=end), 1000)

    plot = column(select, startButton, hvplot.state)

    doc.title = "Time History Graphs"
    doc.add_root(plot)
def test_bounds(bounds):
    global selection, vizual, gvplot, hvplot, heatmap, feats, points, world_map, range_slider, controls3, max_cur_feature, min_cur_feature, temp_feats
    if bounds != None:
        min_long = min(bounds[0], bounds[2])
        max_long = max(bounds[0], bounds[2])
        min_lat = min(bounds[1], bounds[3])
        max_lat = max(bounds[1], bounds[3])
        downscale_feats = loc_feats.loc[(loc_feats['Longitude'] >= min_long)
                                        & (loc_feats['Longitude'] <= max_long)
                                        & (loc_feats['Latitude'] >= min_lat) &
                                        (loc_feats['Latitude'] <= max_lat)]
        temp_feats = downscale_feats
        max_cur_feature = temp_feats[choice.value].max()
        min_cur_feature = temp_feats[choice.value].min()
        range_slider = RangeSlider(start=min_cur_feature,
                                   end=max_cur_feature,
                                   value=(min_cur_feature, max_cur_feature),
                                   step=(max_cur_feature - min_cur_feature) /
                                   20,
                                   title="Feature_range")
        range_slider.on_change('value', update_map_val)
        controls3 = widgetbox([range_slider], width=250)
        new_loc_feats = temp_feats.loc[
            (temp_feats[choice.value] <= range_slider.value[1])
            & (temp_feats[choice.value] >= range_slider.value[0])]
        feats = gv.Dataset(new_loc_feats,
                           kdims=['Longitude', 'Latitude', choice.value])
        points = feats.to(gv.Points, ['Longitude', 'Latitude'], [choice.value])
        if len(new_loc_feats <= 20000):
            world_map = gv.Points(points).options(
                'Points',
                size=5,
                cmap='viridis',
                colorbar=True,
                tools=TOOLS,
                color_index=2,
                width=900,
                height=800,
                colorbar_opts={'scale_alpha': 0.5},
                fill_alpha=0.5,
                line_alpha=0.5)
        else:
            world_map = decimate(gv.Points(points), max_samples=20000).options(
                'Points',
                size=5,
                cmap='viridis',
                colorbar=True,
                tools=TOOLS,
                color_index=2,
                width=900,
                height=800,
                colorbar_opts={'scale_alpha': 0.5},
                fill_alpha=0.5,
                line_alpha=0.5)
        selection = hv.streams.Selection1D(source=world_map)
        heatmap = hv.DynamicMap(selected_points, streams=[selection])
        box = hv.streams.BoundsXY(source=world_map)
        zoom = hv.DynamicMap(test_bounds, streams=[box])
        hvplot = renderer.get_plot(heatmap, curdoc())
        gvplot = renderer.get_plot(world_map, curdoc())
        bvplot = renderer.get_plot(zoom, curdoc())
        vizual.children[1].children = [
            gvplot.state, hvplot.state, bvplot.state
        ]
        vizual.children[0].children[2] = controls3
    else:
        bounds = (0, 0, 0, 0)
    return hv.Bounds(bounds).options(show_grid=False,
                                     height=0,
                                     width=0,
                                     xaxis=None,
                                     yaxis=None,
                                     default_tools=[],
                                     show_frame=False,
                                     toolbar=None)
cur_var = 'Risk Score'
temp_feats = loc_feats
feats = gv.Dataset(temp_feats, kdims=['Longitude', 'Latitude', cur_var])
points = feats.to(gv.Points, ['Longitude', 'Latitude'], [cur_var])
tiles = gv.tile_sources.CartoEco
cur_size = 5

max_cur_feature = temp_feats['Risk Score'].max()
min_cur_feature = temp_feats['Risk Score'].min()
world_map = decimate(gv.Points(points), max_samples=20000).options(
    'Points',
    size=cur_size,
    cmap='viridis',
    colorbar=True,
    tools=TOOLS,
    color_index=2,
    width=900,
    height=800,
    global_extent=True,
    colorbar_opts={'scale_alpha': 0.5},
    fill_alpha=0.5,
    line_alpha=0.4)


def update_map(attr, old, new):
    global selection, vizual, gvplot, hvplot, heatmap, feats, points, world_map, range_slider, controls3, max_cur_feature, min_cur_feature, temp_feats
    max_cur_feature = temp_feats[choice.value].max()
    min_cur_feature = temp_feats[choice.value].min()
    range_slider = RangeSlider(start=min_cur_feature,
                               end=max_cur_feature,
                               value=(min_cur_feature, max_cur_feature),
def heatmap(adata,
            genes,
            groups=None,
            compare='genes',
            agg_fns=['mean', 'var'],
            use_raw=False,
            order_keys=[],
            hover=True,
            show_highlight=False,
            show_scatter=False,
            subsample=None,
            keep_frac=0.2,
            seed=None,
            xrotation=90,
            yrotation=0,
            colorbar=True,
            cont_cmap=None,
            height=200,
            width=600,
            save=None,
            **scatter_kwargs):
    '''
    Plot a heatmap with groups selected from a drop-down menu.
    If `show_highlight=True` and `show_scatterplot=True`, additional
    interaction occurrs when clicking on the highlighted heatmap.

    Params
    -------
    adata: anndata.AnnData
        adata object
    genes: List[Str]
        genes in `adata.var_names`
    groups: List[Str], optional (default: `None`)
        categorical observation in `adata.obs`,
        if `None`, get all groups from `adata.obs`
    compare: Str, optional (default: `'genes'`)
        only used when `show_scatterplot=True`,
        creates a drop-down:
        if `'genes'`:
            drow-down menu will contain values from `genes` and clicking
            a gene in highlighted heatmap will plot scatterplot of the 2
            genes with groups colored in
        if `'basis'`:
            drow-down menu will contain available bases and clicking
            a gene in highlighted heatmap will plot the gene in the selected
            embedding with its expression colored in
        if `'order'`:
            drop-down menu will contain values from `order_keys`,
            and clicking on a gene in highlighted heatmap will plot its expression
            in selected order
    agg_fns: List[Str], optional (default: `['mean', 'var']`
        names of pandas' aggregation functions, such `'min'`, ...
        the first function specified is mapped to colors
    use_raw: Bool, optional (default: `False`)
        whether to use `.raw` for gene expression
    order_keys: List[Str], optional (default: `None`)
        keys in `adata.obs`, used when `compare='order'`
    hover: Bool, optional (default: `True`)
        whether to display hover information over the heatmap
    show_highlight: Bool, optional (default: `False`)
        whether to show when using boxselect
    show_scatter: Bool, optional (default: `False`)
        whether to show a scatterplot,
        if `True`, overrides `show_highlight=False`
    subsample: Str, optional (default: `'decimate'`)
        subsampling strategy for large data
        possible values are `None, 'none', 'decimate'`
    keep_frac: Float, optional (default: `0.2`)
        fraction of cells to keep, used when `subsample='decimate'`
    seed: Union[Float, NoneType], optional (default: `None`)
        random seed, used when `subsample='decimate'`
    xrotation: Int, optional (default: `90`)
        rotation of labels on x-axis
    yrotation: Int, optional (default: `0`)
        rotation of labels on y-axis
    colorbar: Bool, optional (default: `True`)
        whether to show colorbar
    cont_cmap: Union[List[Str], NoneType], optional (default, `None`)
        colormap of the heatmap,
        if `None`, use `Viridis256`
    height: Int, optional (default: `200`)
        height of the heatmap
    width: Int, optional (default: `600`)
        width of the heatmap
    save: Union[os.PathLike, Str, NoneType], optional (default: `None`)
        path where to save the plot
    **scatter_kwargs:
        additional argument for `ipl.experimental.scatter`,
        only used when `show_scatter=True`

    Returns
    -------
    holoviews plot
    '''
    def _highlight(group, index):
        original = hm[group]
        if not index:
            return original

        return original.iloc[sorted(index)]

    def _scatter(group, which, gwise, x, y):
        indices = adata.obs[group] == y if gwise else np.isin(
            adata.obs[group], highlight[group].data['y'])
        # this is necessary
        indices = np.where(indices)[0]

        if is_ordered:
            scatter_kwargs['order_key'] = which
            x, y = None, x
        elif f'X_{which}' in adata.obsm:
            group = x
            x, y = which, which
        else:
            x, y = x, which

        return scatter2(adata,
                        x=x,
                        y=y,
                        color=group,
                        indices=indices,
                        **scatter_kwargs).opts(axiswise=True, framewise=True)

    assert keep_frac >= 0 and keep_frac <= 1, f'`keep_perc` must be in interval `[0, 1]`, got `{keep_frac}`.'
    assert subsample in (None, 'none','decimate'), f'Invalid subsampling strategy `{subsample}`. ' \
            'Possible values are `None, \'none\', \'decimate\'`.'

    assert compare in (
        'genes', 'basis', 'order'
    ), f'`compare` must be one of `\'genes\', \'basis\', \'order\'`.'

    if cont_cmap is None:
        cont_cmap = Viridis256

    is_ordered = False
    scatter_kwargs['use_original_limits'] = True
    scatter_kwargs['subsample'] = None
    if 'plot_width' not in scatter_kwargs:
        scatter_kwargs['plot_width'] = 300
    if 'plot_height' not in scatter_kwargs:
        scatter_kwargs['plot_height'] = 300

    if groups is not None:
        assert len(groups) > 0, f'Number of groups `> 1`.'
    else:
        groups = [k for k in adata.obs.keys() if is_categorical(adata.obs[k])]

    kdims = [hv.Dimension('Group', values=groups, default=groups[0])]

    hm = hv.DynamicMap(lambda g: _heatmap(adata,
                                          genes,
                                          agg_fns=agg_fns,
                                          group=g,
                                          hover=hover,
                                          use_raw=use_raw,
                                          cmap=cont_cmap,
                                          xrotation=xrotation,
                                          yrotation=yrotation,
                                          colorbar=colorbar),
                       kdims=kdims).opts(frame_height=height,
                                         frame_width=width)
    if not show_highlight and not show_scatter:
        return hm

    highlight = hv.DynamicMap(_highlight,
                              kdims=kdims,
                              streams=[Selection1D(source=hm)])
    if not show_scatter:
        return (hm + highlight).cols(1)

    if compare == 'basis':
        basis = [b.lstrip('X_') for b in adata.obsm.keys()]
        kdims += [hv.Dimension('Components', values=basis, default=basis[0])]
    elif compare == 'genes':
        kdims += [hv.Dimension('Genes', values=genes, default=genes[0])]
    else:
        is_ordered = True
        k = scatter_kwargs.pop('order_key', None)
        assert k is not None or order_keys != [], f'No order keys specified.'

        if k is not None and k not in order_keys:
            order_keys.append(k)

        for k in order_keys:
            assert k in adata.obs, f'Order key `{k}` not found in `adata.obs`.'

        kdims += [hv.Dimension('Order', values=order_keys)]

    kdims += [
        hv.Dimension('Groupwise',
                     type=bool,
                     values=[True, False],
                     default=True)
    ]

    scatter_stream = hv.streams.Tap(source=highlight,
                                    x=genes[0],
                                    y=adata.obs[groups[0]].values[0])
    scatter = hv.DynamicMap(_scatter, kdims=kdims, streams=[scatter_stream])

    if subsample == 'decimate':
        scatter = decimate(scatter,
                           max_samples=int(adata.n_obs * keep_frac),
                           streams=[hv.streams.RangeXY(transient=True)],
                           random_seed=seed)

    plot = (hm + highlight + scatter).cols(1)

    if save is not None:
        hv.rendered('bokeh').save(plot, save)

    return plot
def _scatter(adata,
             x,
             y,
             condition,
             by=None,
             subsample='datashade',
             steps=40,
             keep_frac=0.2,
             seed=None,
             legend_loc='top_right',
             size=4,
             xlabel=None,
             ylabel=None,
             title=None,
             use_raw=True,
             hover=None,
             hover_width=10,
             hover_height=10,
             kde=None,
             density=None,
             density_size=150,
             jitter=None,
             perc=None,
             xlim=None,
             ylim=None,
             cmap=None,
             show_legend=True,
             plot_height=400,
             plot_width=400):

    _sentinel = object()

    def create_density_plots(df, density, kdims, cmap):
        cm = {}
        if density == 'all':
            dfs = {_sentinel: df}
        elif density == 'group':
            if 'z' not in df.columns:
                warnings.warn(
                    f'`density=\'groups\' was specified, but no group found. Did you specify `color=...`?'
                )
                dfs = {_sentinel: df}
            elif not is_categorical(df['z']):
                warnings.warn(
                    f'`density=\'groups\' was specified, but column `{condition}` is not categorical.'
                )
                dfs = {_sentinel: df}
            else:
                dfs = {k: v for k, v in df.groupby('z')}
                cm = cmap
        else:
            raise ValueError(
                f'Invalid `density` type: \'`{density}`\'. Possible values are `\'all\'`, `\'group\'`.'
            )
        # assumes x, y order in kdims
        return [
            hv.Overlay([
                hv.Distribution(df, kdims=dim).opts(color=cm.get(k, 'black'),
                                                    framewise=True)
                for k, df in dfs.items()
            ]) for dim in kdims
        ]

    assert keep_frac >= 0 and keep_frac <= 1, f'`keep_perc` must be in interval `[0, 1]`, got `{keep_frac}`.'

    adata_mraw = get_mraw(adata, use_raw)

    if subsample == 'uniform':
        cb_kwargs = {'steps': steps}
    elif subsample == 'density':
        cb_kwargs = {'size': int(keep_frac * adata.n_obs), 'seed': seed}
    else:
        cb_kwargs = {}

    categorical = False
    if condition is None:
        cmap = ['black'] * len(x) if subsample == 'datashade' else 'black'
    elif is_categorical(condition):
        categorical = True
        cmap = Sets1to3 if cmap is None else cmap
        cmap = odict(
            zip(condition.cat.categories, adata.uns.get(f'{by}_colors', cmap)))
    else:
        cmap = Viridis256 if cmap is None else cmap

    jitter_x, jitter_y = None, None
    if isinstance(jitter, (tuple, list)):
        assert len(
            jitter
        ) == 2, f'`jitter` must be of length `2`, found `{len(jitter)}`.'
        jitter_x, jitter_y = jitter
    elif jitter is not None:
        jitter_x, jitter_y = jitter, jitter

    if jitter_x is not None:
        x += np.random.normal(0, jitter_x, size=x.shape)
    if jitter_y is not None:
        y += np.random.normal(0, jitter_y, size=y.shape)

    data = {'x': x, 'y': y, 'z': condition}
    vdims = ['z']

    hovertool = None
    if hover is not None:
        for k, dt in hover.items():
            vdims.append(k)
            data[k] = dt
        hovertool = HoverTool(
            tooltips=[(key.capitalize(), f'@{key}') for key in (
                ['index'] if subsample == 'datashade' else hover.keys())])

    data = pd.DataFrame(data)
    if categorical:
        data['z'] = data['z'].astype('category')

    if not vdims:
        vdims = None

    if xlim is None:
        xlim = pad(*minmax(x))
    if ylim is None:
        ylim = pad(*minmax(y))

    kdims = [('x', 'x' if xlabel is None else xlabel),
             ('y', 'y' if ylabel is None else ylabel)]

    scatter = hv.Scatter(data, kdims=kdims, vdims=vdims).sort('z')
    scatter = scatter.opts(size=size, xlim=xlim, ylim=ylim)

    kde_plot= None if kde is None else \
            hv.Bivariate(scatter).opts(bandwidth=kde, show_legend=False, line_width=2)
    xdist, ydist = (None, None) if density is None else create_density_plots(
        data, density, kdims, cmap)

    if categorical:
        scatter = scatter.opts(cmap=cmap,
                               color='z',
                               show_legend=show_legend,
                               legend_position=legend_loc)
    elif 'z' in data:
        scatter = scatter.opts(cmap=cmap,
                               color='z',
                               clim=tuple(map(float, minmax(data['z'], perc))),
                               colorbar=True,
                               colorbar_opts={'width': 20})
    else:
        scatter = scatter.opts(color='black')

    legend = None
    if subsample == 'datashade':
        subsampled = dynspread(datashade(
            scatter,
            aggregator=(ds.count_cat('z') if categorical else ds.mean('z'))
            if vdims is not None else None,
            color_key=cmap,
            cmap=cmap,
            streams=[hv.streams.RangeXY(transient=True), hv.streams.PlotSize],
            min_alpha=255).opts(axiswise=True, framewise=True),
                               threshold=0.8,
                               max_px=5)
        if show_legend and categorical:
            legend = hv.NdOverlay({
                k: hv.Points([0, 0], label=str(k)).opts(size=0, color=v)
                for k, v in cmap.items()
            })
        if hover is not None:
            t = hv.util.Dynamic(rasterize(scatter, width=hover_width, height=hover_height, streams=[hv.streams.RangeXY],
                                          aggregator=ds.reductions.min('index')), operation=hv.QuadMesh)\
                                              .opts(tools=[hovertool], axiswise=True, framewise=True,
                                                    alpha=0, hover_alpha=0.25,
                                                    height=plot_height, width=plot_width)
            scatter = t * subsampled
        else:
            scatter = subsampled

    elif subsample == 'decimate':
        scatter = decimate(scatter,
                           max_samples=int(adata.n_obs * keep_frac),
                           streams=[hv.streams.RangeXY(transient=True)],
                           random_seed=seed)

    if legend is not None:
        scatter = (scatter * legend).opts(legend_position=legend_loc)

    if kde_plot is not None:
        scatter *= kde_plot

    scatter = scatter.opts(height=plot_height, width=plot_width)
    scatter = scatter.opts(hv.opts.Scatter(
        tools=[hovertool])) if hovertool is not None else scatter

    if xdist is not None and ydist is not None:
        scatter = (scatter << ydist.opts(width=density_size)) << xdist.opts(
            height=density_size)

    return scatter.opts(title=title if title is not None else '')
    def load_raster(self):
        nr_units = get_number_of_units_for_patient(self.patient_id)
        neural_rec_time = get_neural_rectime_of_patient(
            self.patient_id, self.session_nr) / 1000
        data_array = []
        for i in range(nr_units):
            spikes = get_spiking_activity(self.patient_id, self.session_nr, i)
            # delete downloaded file from working directory
            if os.path.exists("neural_rec_time.npy"):
                os.remove("neural_rec_time.npy")
            data_array.append(list(np.array(spikes) - neural_rec_time[0]))

        ret = []
        for i in range(len(data_array)):
            # i is unit ID
            for j in data_array[i]:
                # j is spike time
                ret.append((j, i))

        scatter = hv.Scatter(ret)

        # Toggle variable decimate_plot to specify whether you'd like to use decimate
        # Decimate only plots a maximum number of elements at each zoom step, this way the plot is much faster
        # If decimate is not activated, the plot is clean, but very slow
        decimate_plot = True
        if decimate_plot:
            scatter = scatter.opts(
                color='blue',
                marker='dash',
                size=12,
                alpha=1,
                line_width=0.6,
                angle=90,
                xlabel='Time from beginning of recording in milliseconds',
                ylabel='Unit ID')
            # adjust the max_samples parameter if the plot is too slow or if you think it can handle even more spikes
            raster = decimate(scatter, max_samples=40000).opts(
                width=1500, height=800) * boxes
        else:
            scatter = scatter.opts(color='blue',
                                   marker='dash',
                                   size=12,
                                   alpha=1,
                                   line_width=0.2,
                                   angle=90)
            raster = scatter.opts(
                width=1500,
                height=800,
                xlabel='Time from beginning of recording in milliseconds',
                ylabel='Unit ID') * boxes

        # extracting necessary information from the database
        start_times_pauses = \
        (MoviePauses() & "patient_id={}".format(self.patient_id) & "session_nr={}".format(self.session_nr)).fetch(
            "start_times")[0]
        stop_times_pauses = \
        (MoviePauses() & "patient_id={}".format(self.patient_id) & "session_nr={}".format(self.session_nr)).fetch(
            "stop_times")[0]
        start_times_pauses = start_times_pauses - neural_rec_time[0]
        stop_times_pauses = stop_times_pauses - neural_rec_time[0]

        start_times_skips = \
        (MovieSkips() & "patient_id={}".format(self.patient_id) & "session_nr={}".format(self.session_nr)).fetch("start_times")[0]
        stop_times_skips = \
        (MovieSkips() & "patient_id={}".format(self.patient_id) & "session_nr={}".format(self.session_nr)).fetch("stop_times")[0]
        start_times_skips = start_times_skips - neural_rec_time[0]
        stop_times_skips = stop_times_skips - neural_rec_time[0]

        # The user can select a region which should be highlighted on top of the raster plot.
        # Here every option of the highlights variable from above has to be implemented
        if self.highlight == "Pauses":
            ov = hv.NdOverlay({
                i: hv.VSpan(start_times_pauses[i],
                            stop_times_pauses[i]).opts(color='orange',
                                                       alpha=0.4)
                for i in range(len(start_times_pauses))
            })

        if self.highlight == "Skips":
            ov = hv.NdOverlay({
                i: hv.VSpan(start_times_skips[i],
                            stop_times_skips[i]).opts(color='green', alpha=0.4)
                for i in range(len(start_times_skips))
            })

        if self.highlight == 'None':
            ov = hv.NdOverlay({
                i: hv.VSpan(0, 0).opts(color='white', alpha=0)
                for i in range(1)
            })

        return raster * ov.opts(framewise=True)
    def produce_timehistory(self, context, doc):
        """
        Create timetool data timehistory
        
        Parameters
        ----------
        
        context = zmq.Context()
            Creates zmq socket to receive data
            
        doc: bokeh.document (I think)
            Bokeh document to be displayed on webpage
        
        """

        # Port to connect to master
        port = 5000
        socket = context.socket(zmq.REQ)

        # MUST BE FROM SAME MACHINE, CHANGE IF NECESSARY!!!
        socket.connect("tcp://localhost:%d" % port)

        # Dynamic Maps
        plot_peak_b = hv.DynamicMap(partial(hv.Curve, kdims=['index', 'peak']),
                                    streams=[self.b_th_peak]).options(
                                        width=1000,
                                        finalize_hooks=[
                                            apply_formatter
                                        ]).redim.label(index='Time in UTC')

        plot_peak_std_low = hv.DynamicMap(
            partial(hv.Curve, kdims=['index', 'lowerbound']),
            streams=[self.b_th_peak]).options(
                line_alpha=0.5,
                width=1000,
                line_color='gray',
                finalize_hooks=[apply_formatter
                                ]).redim.label(index='Time in UTC')

        plot_peak_std_high = hv.DynamicMap(
            partial(hv.Curve, kdims=['index', 'higherbound']),
            streams=[self.b_th_peak]).options(
                line_alpha=0.5, width=1000,
                line_color='gray').redim.label(index='Time in UTC')

        # Decimate and datashade
        pointTest = decimate(plot_peak_b, streams=[hv.streams.PlotSize])

        test1 = datashade(plot_peak_std_low,
                          streams=[hv.streams.PlotSize],
                          normalization='linear').options(
                              width=1000, finalize_hooks=[apply_formatter])

        test2 = datashade(plot_peak_std_high,
                          streams=[hv.streams.PlotSize],
                          normalization='linear')

        plot = (test1 * test2 * pointTest)

        # Use bokeh to render plot
        hvplot = renderer.get_plot(plot, doc)

        def push_data(stream):
            """
            Push data to timetool time history graph
            
            """

            median = pd.DataFrame({'peak': []})
            lowerbound = pd.DataFrame({'peak': []})
            higherbound = pd.DataFrame({'peak': []})

            # Request
            socket.send_string("Hello")
            print("Oof")

            data_dict = socket.recv_pyobj()
            peakDict = data_dict['peakDict']
            peakTSDict = data_dict['peakTSDict']

            TS_key = self.switch_key + '_TS'
            data = list(peakDict[self.switch_key])
            timestamp = list(peakTSDict[TS_key])

            times = [1000 * time for time in timestamp]
            dataSeries = pd.Series(data, index=times)

            zipped = basic_event_builder(peak=dataSeries)
            median = zipped.rolling(120, min_periods=1).median()
            std = zipped.rolling(120, min_periods=1).std()
            lowerbound = median - std
            higherbound = median + std

            df = pd.DataFrame({
                'peak': median['peak'],
                'lowerbound': lowerbound['peak'],
                'higherbound': higherbound['peak']
            })

            stream.send(df)

        def switch(attr, old, new):
            """
            Update drop down menu value

            """
            self.switch_key = select.value
            self.clear_buffer()
            print("Yes!")

        def play_graph():
            """
            Provide play and pause functionality to the graph

            """

            if startButton.label == '► Play':
                startButton.label = '❚❚ Pause'

                self.callback_id_th_b = doc.add_periodic_callback(
                    partial(push_data, stream=self.b_th_peak), 1000)

            else:
                startButton.label = '► Play'
                doc.remove_periodic_callback(self.callback_id_th_b)

        peak_list = [
            'peak_8', 'peak_9', 'peak_10', 'peak_11', 'peak_12', 'peak_13',
            'peak_14', 'peak_15'
        ]
        select = Select(title='Peak:', value='peak_8', options=peak_list)
        select.on_change('value', switch)

        startButton = Button(label='❚❚ Pause')
        startButton.on_click(play_graph)

        self.callback_id_th_b = doc.add_periodic_callback(
            partial(push_data, stream=self.b_th_peak), 1000)

        plot = column(select, startButton, hvplot.state)

        doc.title = "Time History Graphs"
        doc.add_root(plot)
Exemple #18
0
            if front:  #we want "seq" to be in the front
                #so append current column to the end of the list
                cols.append(x)
            else:
                #we want "seq" to be last, so insert this
                #column in the front of the new column list
                #"cols" we are building:
                cols.insert(0, x)
    return dataframe[cols]


pd_nodes = pd.read_pickle('nodes.pkl')
pd_edges = pd.read_pickle('edges-bundled.pkl')

r_nodes = hv.Points(set_column_sequence(pd_nodes, ['x', 'y']), label='Nodes')
r_edges = hv.Curve(pd_edges, label='Bundled')

hv_layout=datashade(r_edges, **sz) * \
          decimate(hv.Points(r_nodes),max_samples=1000)
# Opts
hv.opts(
    'RGB [xaxis=None yaxis=None show_grid=False bgcolor="black" width={width} height={height}]'
    .format(**sz))
hv.opts('Points [tools=["hover"]] (color="cyan", size=3)')

hv_plot = renderer.get_plot(hv_layout, curdoc())

bk_layout = layout([[hv_plot.state]], sizing_mode='fixed')

curdoc().add_root(bk_layout)