def setUp(self):
     self.lamb = 1  # Dipolar coupling constant: mu0*m^2/ (2 * pi * d^3 * K * T)
     self.r_cut = 15
     # interaction cut-off
     self.diameter = 1
     # particles diameter
     # interaction between point dipoles
     self.dipole_dipole = """ float rsq = dot(r_ij, r_ij);
                             float r_cut = {0};
                             if (rsq < r_cut*r_cut)
                                 {{
                                 float lambda = {1};
                                 float r = fast::sqrt(rsq);
                                 float r3inv = 1.0 / rsq / r;
                                 vec3<float> t = r_ij / r;
                                 vec3<float> pi_o(1,0,0);
                                 vec3<float> pj_o(1,0,0);
                                 rotmat3<float> Ai(q_i);
                                 rotmat3<float> Aj(q_j);
                                 vec3<float> pi = Ai * pi_o;
                                 vec3<float> pj = Aj * pj_o;
                                 float Udd = (lambda*r3inv/2)*( dot(pi,pj)
                                              - 3 * dot(pi,t) * dot(pj,t));
                                 return Udd;
                                }}
                             else
                                 return 0.0f;
                         """.format(self.r_cut, self.lamb)
     self.snapshot = data.make_snapshot(N=2,
                                        box=data.boxdim(L=2 * self.r_cut,
                                                        dimensions=3),
                                        particle_types=['A'])
 def setUp(self):
     lennard_jones = """
                          float rsq = dot(r_ij, r_ij);
                          float rcut  = alpha_iso[0];
                          if (rsq <= rcut*rcut)
                             {{
                             float sigma = alpha_iso[1];
                             float eps   = alpha_iso[2];
                             float sigmasq = sigma*sigma;
                             float rsqinv = sigmasq / rsq;
                             float r6inv = rsqinv*rsqinv*rsqinv;
                             return 4.0f*eps*r6inv*(r6inv-1.0f);
                             }}
                          else
                             {{
                             return 0.0f;
                             }}
                          """
     self.dist = 2.0
     # distance between test particles
     snapshot = data.make_snapshot(N=2,
                                   box=data.boxdim(L=10, dimensions=3),
                                   particle_types=['A'])
     snapshot.particles.position[0, :] = (0, 0, 0)
     snapshot.particles.position[1, :] = (self.dist, 0, 0)
     system = init.read_snapshot(snapshot)
     mc = hpmc.integrate.sphere(seed=1, d=0)
     mc.shape_param.set('A', diameter=0)
     self.patch = jit.patch.user(mc=mc,
                                 r_cut=2.5,
                                 array_size=3,
                                 code=lennard_jones)
     self.logger = analyze.log(filename=None,
                               quantities=["hpmc_patch_energy"],
                               period=1)
Exemple #3
0
def initialize_snap(syst, params={}):

    syst["np"] = sum(
        syst["len_polymers"]) * (1 + syst["excess_DNA"]) + syst["ndiff"]

    syst["nbond"] = sum(syst["len_polymers"]) - len(syst["len_polymers"])

    if syst["cohesin_real"]:
        syst["np"] += syst["n_cohesin"] * syst["particule_per_cohesin"]
        syst["nbond"] += syst["n_cohesin"] * syst["particule_per_cohesin"]

    syst["Rf"] = (sum(syst["len_polymers"]) * 0.5**3 / syst['density'])**0.33
    print("Radius of the cell", syst["Rf"])
    R = syst["Rf"] + 1
    snapshot = data.make_snapshot(N=syst["np"],
                                  box=data.boxdim(L=2 * R),
                                  bond_types=['polymer'])

    syst["bond_list"] = ['DNA', 'cohesin', "fFactor", "weak"]

    syst["plist"] = [
        "DNA", "uDNA", "pDNA", "fFactor", 'cohesine', "rDNA", "fDNA", "tDNA"
    ]
    # uDNA unreplicated DNA
    # rDNA replicated DNA
    # fDNA freshly replicated DNA
    # tDNA template replicated DNA

    return snapshot, syst
Exemple #4
0
    def setUp(self):
        snap = data.make_snapshot(3, data.boxdim(Lx = 3.5, Ly = 1.5, Lz = 1.5))

        #Setup a set of positions which we can easily see the overlaps for
        snap.particles.position[0] = [-.9, 0.0, 0.0]
        snap.particles.position[1] = [0.0, 0.0, 0.0]
        snap.particles.position[2] = [1.0, 0.25, 0.0]

        self.system = init.read_snapshot(snap)
        self.mc = hpmc.integrate.sphere(seed=123)
    def setUp(self):
        snap = data.make_snapshot(3, data.boxdim(Lx=3.5, Ly=1.5, Lz=1.5))

        #Setup a set of positions which we can easily see the overlaps for
        snap.particles.position[0] = [-.9, 0.0, 0.0]
        snap.particles.position[1] = [0.0, 0.0, 0.0]
        snap.particles.position[2] = [1.0, 0.25, 0.0]

        self.system = init.read_snapshot(snap)
        self.mc = hpmc.integrate.sphere(seed=123)
    def setUp(self):
        # square well attraction on constituent spheres
        square_well = """float rsq = dot(r_ij, r_ij);
                              float r_cut = alpha_union[0];
                              if (rsq < r_cut*r_cut)
                                  return alpha_union[1];
                              else
                                  return 0.0f;
                           """

        # soft repulsion between centers of unions
        soft_repulsion = """float rsq = dot(r_ij, r_ij);
                                  float r_cut = alpha_iso[0];
                                  if (rsq < r_cut*r_cut)
                                    return alpha_iso[1];
                                  else
                                    return 0.0f;
                         """
        diameter = 1.0
        snapshot = data.make_snapshot(N=2,
                                      box=data.boxdim(L=10, dimensions=3),
                                      particle_types=['A'])
        snapshot.particles.position[0, :] = (0, 0, 0)
        snapshot.particles.position[1, :] = (diameter, 0, 0)
        system = init.read_snapshot(snapshot)
        mc = hpmc.integrate.sphere_union(d=0, a=0, seed=1)
        mc.shape_param.set('A',
                           diameters=[diameter] * 2,
                           centers=[(0, 0, -diameter / 2),
                                    (0, 0, diameter / 2)],
                           overlap=[0] * 2)
        self.patch = jit.patch.user_union(mc=mc, r_cut=2.5, array_size=2, r_cut_iso=2.5, array_size_iso=2, \
                                          code=square_well, code_iso=soft_repulsion)
        self.patch.set_params('A',
                              positions=[(0, 0, -diameter / 2),
                                         (0, 0, diameter / 2)],
                              typeids=[0, 0])
        self.logger = analyze.log(filename=None,
                                  quantities=["hpmc_patch_energy"],
                                  period=1)
Exemple #7
0
 def to_hoomd_snapshot(self, snapshot=None):
     "Copy this frame to a HOOMD-blue snapshot."
     self.load()
     if snapshot is None:
         try:
             from hoomd import data
         except ImportError:
             try:
                 # Try importing from hoomd 1.x
                 from hoomd_script import data
             except ImportError:
                 raise ImportError('hoomd')
         box = data.boxdim(
             Lx=self.box.Lx,
             Ly=self.box.Ly,
             Lz=self.box.Lz,
             xy=self.box.xy,
             xz=self.box.xz,
             yz=self.box.yz,
             dimensions=self.box.dimensions,
         )
         snapshot = data.make_snapshot(
             N=len(self),
             box=box,
             particle_types=self.types,
         )
         np.copyto(
             snapshot.particles.typeid,
             np.array(self.typeid, dtype=snapshot.particles.typeid.dtype))
     for prop in PARTICLE_PROPERTIES:
         try:
             np.copyto(getattr(snapshot.particles, prop),
                       getattr(self, prop))
         except AttributeError:
             pass
     return snapshot
Exemple #8
0
def create_empty(**kwargs):
    snap = data.make_snapshot(**kwargs);
    return init.read_snapshot(snap);
Exemple #9
0
    def test_access(self):
        N = 2
        L = 10
        context.initialize()
        self.snapshot = data.make_snapshot(N=N,
                                           box=data.boxdim(L=L, dimensions=2),
                                           particle_types=['A'])

        # sphere
        diam = 1.125
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.sphere(seed=2398, d=0.0)
        self.mc.shape_param.set('A', diameter=diam)
        self.assertAlmostEqual(self.mc.shape_param['A'].diameter, diam)
        del self.mc
        del self.system
        context.initialize()
        # ellipsoid
        a = 1.125
        b = 0.238
        c = 2.25
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.ellipsoid(seed=2398, d=0.0)
        self.mc.shape_param.set('A', a=a, b=b, c=c)
        self.assertAlmostEqual(self.mc.shape_param['A'].a, a)
        self.assertAlmostEqual(self.mc.shape_param['A'].b, b)
        self.assertAlmostEqual(self.mc.shape_param['A'].c, c)
        del self.mc
        del self.system
        context.initialize()

        # convex_polygon
        v = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_polygon(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        del self.mc
        del self.system
        context.initialize()

        # convex_spheropolygon
        v = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
        r = 0.1234
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_spheropolygon(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r)
        del self.mc
        del self.system
        context.initialize()

        #simple_polygon
        v = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.simple_polygon(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        del self.mc
        del self.system
        context.initialize()

        # polyhedron
        import math
        v = [(-0.5, -0.5, 0), (-0.5, 0.5, 0), (0.5, -0.5, 0), (0.5, 0.5, 0),
             (0, 0, 1.0 / math.sqrt(2)), (0, 0, -1.0 / math.sqrt(2))]
        f = [(0, 4, 1), (1, 4, 2), (2, 4, 3), (3, 4, 0), (0, 5, 1), (1, 5, 2),
             (2, 5, 3), (3, 5, 0)]
        r = 0.0
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.polyhedron(seed=10)
        self.mc.shape_param.set('A', vertices=v, faces=f, sweep_radius=r)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        diff = (np.array(f) -
                np.array(self.mc.shape_param['A'].faces)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r)
        del self.mc
        del self.system
        context.initialize()

        # convex_polyhedron
        v = [(1, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1), (1, 1, -1),
             (1, -1, -1), (-1, -1, -1), (-1, 1, -1)]
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_polyhedron(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        del self.mc
        del self.system
        context.initialize()

        # convex_spheropolyhedron
        v = [(1, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1), (1, 1, -1),
             (1, -1, -1), (-1, -1, -1), (-1, 1, -1)]
        r = 0.1234
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_spheropolyhedron(seed=2398,
                                                         d=0.1,
                                                         a=0.1)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r)
        del self.mc
        del self.system
        context.initialize()

        # faceted_sphere
        v = [(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1),
             (1, -1, 1), (1, 1, -1), (1, 1, 1)]
        offs = [-1] * 6
        norms = [(-1, 0, 0), (1, 0, 0), (
            0,
            1,
            0,
        ), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
        diam = 2
        orig = (0, 0, 0)
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.faceted_sphere(seed=10)
        self.mc.shape_param.set('A',
                                normals=norms,
                                offsets=offs,
                                vertices=v,
                                diameter=diam,
                                origin=orig)

        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        diff = (np.array(offs) -
                np.array(self.mc.shape_param['A'].offsets)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        diff = (np.array(norms) -
                np.array(self.mc.shape_param['A'].normals)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        diff = (np.array(orig) -
                np.array(self.mc.shape_param['A'].origin)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        self.assertAlmostEqual(self.mc.shape_param['A'].diameter, diam)
        del self.mc
        del self.system
        context.initialize()

        # sphinx
        # GPU Sphinx is not built on most the time
        if not hoomd.context.current.device.cpp_exec_conf.isCUDAEnabled():
            cent = [(0, 0, 0), (0, 0, 1.15), (0, 0, -1.15)]
            diams = [2, -2.2, -2.2]
            self.system = init.read_snapshot(self.snapshot)
            self.mc = hpmc.integrate.sphinx(seed=10)
            self.mc.shape_param.set('A', diameters=diams, centers=cent)
            diff = (np.array(cent) -
                    np.array(self.mc.shape_param['A'].centers)).flatten()
            self.assertAlmostEqual(diff.dot(diff), 0)
            diff = (np.array(diams) -
                    np.array(self.mc.shape_param['A'].diameters)).flatten()
            self.assertAlmostEqual(diff.dot(diff), 0)
            del self.mc
            del self.system
            context.initialize()

        # sphere_union
        cent = [(0, 0, 0), (0, 0, 1.15), (0, 0, -1.15)]
        diams = [2, 2.2, 1.75]
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.sphere_union(seed=10)
        self.mc.shape_param.set('A', diameters=diams, centers=cent)
        diff = (np.array(cent) -
                np.array(self.mc.shape_param['A'].centers)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        for i, m in enumerate(self.mc.shape_param['A'].members):
            self.assertAlmostEqual(m.diameter, diams[i])
        del self.mc
        del self.system
        del self.snapshot
        context.initialize()
Exemple #10
0
    def setUp(self):
        snap = data.make_snapshot(N=0,box=data.boxdim(Lx = 10, Ly = 10, Lz = 10))

        self.system = init.read_snapshot(snap)
        self.mc = hpmc.integrate.convex_polyhedron(seed=123)
Exemple #11
0
def simulate(traj_filename):

    with open(traj_filename, "r") as f:
        traj = json.load(f)

    seed = traj["seed"]
    len_chrom = traj["len_chrom"]
    Cent = traj["Cent"]
    p_ribo = traj["p_ribo"]
    R = traj["R"]
    micron = traj["micron"]
    data_folder = traj["data_folder"]

    # Diffusing elements
    N_diffu = traj["N_diffu"]
    cut_off_inte = traj["cut_off_inte"]
    p_inte = traj["p_inte"]
    dt = traj["dt"]
    p_origins = traj["p_origins"]

    # Yeast case
    spb = traj["spb"]
    nucleole = traj["nucleole"]
    telomere = traj["telomere"]
    microtubule_length = traj["microtubule_length"] * micron
    diameter_nuc = traj["diameter_nuc"] * micron
    special_start = traj["special_start"]
    Activ_Origins = traj["Activ_Origins"]
    visu = traj["visu"]
    dump_hic = traj["dump_hic"]

    # Scenari
    diff_alone = traj["diff_alone"]
    diff_bind_when_free = traj["diff_bind_when_free"]
    diff_bind_when_on_DNA = traj["diff_bind_when_on_DNA"]
    replicate_DNA = traj["replicate_DNA"]

    np.random.seed(seed)
    hoomd.context.initialize("--mode=cpu")

    if diff_alone:
        # Check
        assert (diff_bind_when_free is False)
        assert (diff_bind_when_on_DNA is False)

    # End of parameter
    ##########################################

    #########################################
    # Define polymer bonding and positions

    Np = len(len_chrom)
    assert (len(len_chrom) == len(Cent) == len(p_ribo))
    if special_start:
        Sim = create_init_conf_yeast(len_chrom=len_chrom,
                                     dist_centro=Cent,
                                     p_ribo=p_ribo,
                                     Radius=R,
                                     Mt=microtubule_length)
    else:
        Sim = []

    spbp = 0 if not spb else 1

    Total_particle = sum(len_chrom) + N_diffu * 2 + spbp
    list_nuc = [
        list(range(start, start + size)) if size != 0 else []
        for start, size in p_ribo
    ]
    # print(list_nuc)
    # exit()

    snapshot = data.make_snapshot(N=Total_particle,
                                  box=data.boxdim(L=2 * R),
                                  bond_types=['polymer'])

    spbb = Np if spb else 0

    if visu:
        spbb = 0

    bond_diffu = 0
    if diff_bind_when_free:
        bond_diffu = N_diffu

    snapshot.bonds.resize(sum(len_chrom) - len(len_chrom) + bond_diffu + spbb)

    bond_list = ['Mono_Mono', 'Diff_Diff', 'Mono_Diff']
    if spb:
        bond_list += ["Spb_Cen"]
    if nucleole:
        bond_list += ["Mono_Nuc", "Nuc_Nuc"]
    snapshot.bonds.types = bond_list

    plist = ['Mono', 'Ori', 'Diff', 'A_Ori', 'P_Ori', 'S_Diff', 'F_Diff']

    if spb:
        plist.append("Spb")
    if nucleole:
        plist += ['Nuc', 'A_Nuc', 'P_Nuc']

    if telomere:
        plist += ["Telo"]

    snapshot.particles.types = plist

    offset_bond = 0
    offset_particle = 0
    lPolymers = []

    ################################################
    # Polymer chains
    Cen_pos = []
    for i in range(Np):

        found_cen = False
        npp = len_chrom[i]  # Number of particles
        # Position of origin of replication
        pos_origins = p_origins[i]

        if Sim == []:
            initp = 2 * np.random.rand(3) - 1
        else:
            # print(i)
            initp = Sim.molecules[i].coords[0]

        for p in range(npp - 1):
            inuc = 0
            if nucleole:
                if p in list_nuc[i]:
                    inuc += 1
                if p + 1 in list_nuc[i]:
                    inuc += 1

            snapshot.bonds.group[offset_bond + p] = [
                offset_particle + p, offset_particle + p + 1
            ]
            if inuc == 0:
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Mono_Mono')  # polymer_A
            if inuc == 1:
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Mono_Nuc')  # polymer_A
            if inuc == 2:
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Nuc_Nuc')  # polymer_A

        offset_bond += npp - 1

        for p in range(npp):
            # print(offset_bond, offset_bond + p)
            if Sim == []:
                new = 2 * (2 * np.random.rand(3) - 1)
                while linalg.norm(initp + new) > R - 1:
                    new = 2 * (2 * np.random.rand(3) - 1)

                initp += new
            else:
                initp = Sim.molecules[i].coords[p]

            snapshot.particles.position[offset_particle + p] = initp

            if p in pos_origins:
                snapshot.particles.typeid[offset_particle + p] = plist.index(
                    'Ori')  # Ori
            else:
                snapshot.particles.typeid[offset_particle + p] = plist.index(
                    'Mono')  # A

            if spb and p == Cent[i]:
                Cen_pos.append(offset_particle + p)

                found_cen = True

            if nucleole and p in list_nuc[i]:
                snapshot.particles.typeid[offset_particle +
                                          p] = plist.index('Nuc')

            if telomere and (p == 0 or p == npp - 1):
                snapshot.particles.typeid[offset_particle +
                                          p] = plist.index('Telo')

        lPolymers.append(
            Polymer(i, offset_particle, offset_particle + npp - 1,
                    [po + offset_particle for po in pos_origins]))
        offset_particle += npp

        assert (found_cen == spb)

    phic = 0
    if dump_hic:
        phic = 0 + offset_particle - 1
    ###################################################
    # SPD
    if spb:
        tag_spb = 0 + offset_particle
        # print(tag_spb)
        # print(snapshot.particles[offset_particle])
        snapshot.particles.position[offset_particle] = [-R + 0.1, 0, 0]
        snapshot.particles.typeid[offset_particle] = plist.index('Spb')
        offset_particle += 1

        if not visu:
            for i in range(Np):
                # print(offset_particle - 1, Cen_pos[i])
                snapshot.bonds.group[offset_bond] = [
                    offset_particle - 1, Cen_pos[i]
                ]
                snapshot.bonds.typeid[offset_bond] = bond_list.index(
                    'Spb_Cen')  # polymer_A

                offset_bond += 1

    ############################################################
    # Diffusing elements
    # Defining useful classes

    # Defining particles and bonds for the simulation

    for i in range(N_diffu):
        npp = 2  # Number of particles

        initp = (R - 2) * (2 * np.random.rand(3) - 1)
        while linalg.norm(initp) > R - 1:
            initp = (R - 2) * (2 * np.random.rand(3) - 1)
        if diff_bind_when_free:
            for p in range(npp - 1):
                snapshot.bonds.group[offset_bond + p] = [
                    offset_particle + p, offset_particle + p + 1
                ]
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Diff_Diff')  # Diff_Diff
            offset_bond += npp - 1

        for p in range(npp):
            # print(offset_bond, offset_bond + p)
            if diff_bind_when_free:
                new = 2 * (2 * np.random.rand(3) - 1)
                while linalg.norm(initp + new) > R - 1:
                    new = 2 * (2 * np.random.rand(3) - 1)
                    # print(initp,new,R,linalg.norm(initp + new))
                    # exit()
                initp += new
            else:
                initp = (R - 1) * (2 * np.random.rand(3) - 1)

            snapshot.particles.position[offset_particle + p] = initp
            snapshot.particles.typeid[offset_particle + p] = plist.index(
                "Diff")  # Diffu

        offset_particle += npp

    # Load the configuration

    for i, p in enumerate(snapshot.bonds.group):
        if p[0] == p[1]:
            print(i, p)

    system = init.read_snapshot(snapshot)

    for i, p in enumerate(system.particles):
        # print(p)
        # exit()
        assert p.tag == i

    for i, b in enumerate(system.bonds):
        if b.a == b.b:
            print(b.a, b.b)

            raise
        # print(p)
        # exit()
        assert b.tag == i
    ###############################################

    ###############################################
    # Defining force field:
    harmonic = md.bond.harmonic()
    harmonic.bond_coeff.set(bond_list, k=330.0, r0=1)

    harmonic.bond_coeff.set('Mono_Diff', k=10.0, r0=1)

    if spb:
        harmonic.bond_coeff.set('Spb_Cen', k=1000.0, r0=microtubule_length)

    if nucleole:
        harmonic.bond_coeff.set('Nuc_Nuc', k=330, r0=diameter_nuc)
        harmonic.bond_coeff.set('Mono_Nuc',
                                k=330,
                                r0=diameter_nuc / 2. + 1. / 2)

    nl = md.nlist.tree(r_buff=0.4, check_period=1)

    # Potential for warmup
    gauss = md.pair.gauss(r_cut=3.0, nlist=nl)

    gauss.pair_coeff.set(plist, plist, epsilon=1.0, sigma=1.0)

    if nucleole:
        for ip1, p1 in enumerate(plist):
            for p2 in plist[ip1:]:
                inuc = 0
                if "Nuc" in p1:
                    inuc += 1
                if "Nuc" in p2:
                    inuc += 1
                if inuc == 1:
                    gauss.pair_coeff.set(p1,
                                         p2,
                                         epsilon=.5,
                                         sigma=0.5 + diameter_nuc / 2.,
                                         r_cut=(0.5 + diameter_nuc / 2.) * 3)
                if inuc == 2:
                    gauss.pair_coeff.set(p1,
                                         p2,
                                         epsilon=1.0,
                                         sigma=diameter_nuc,
                                         r_cut=3 * diameter_nuc)
    # gauss.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
    # gauss.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

    # Spherical confinement
    sphere = md.wall.group()
    sphere.add_sphere(r=R, origin=(0.0, 0.0, 0.0), inside=True)

    wall_force_slj = md.wall.slj(sphere, r_cut=3.0)
    wall_force_slj.force_coeff.set(plist, epsilon=1.0, sigma=1.0, r_cut=1.12)

    if nucleole:
        wall_force_slj.force_coeff.set('Nuc',
                                       epsilon=1.0,
                                       sigma=diameter_nuc,
                                       r_cut=diameter_nuc * 1.12)
    if telomere:
        wall_force_slj.force_coeff.set(plist, epsilon=2.0, sigma=1.5, r_cut=3)

    # Group;
    all_beads = group.all()
    if spb:
        Spb_g = group.tag_list(name="Spb", tags=[tag_spb])
        pspb = [p.position for p in Spb_g]
        print(pspb)

        all_move = group.difference(name="move", a=all_beads, b=Spb_g)
    else:
        all_move = all_beads
    # Log
    logger = analyze.log(filename=data_folder + 'mylog.log',
                         period=1000,
                         quantities=[
                             'temperature', 'potential_energy',
                             'kinetic_energy', 'volume', 'pressure'
                         ],
                         overwrite=True)

    # Warmup
    converged = False
    dt = 0.005
    while not converged and not visu:
        try:

            method = md.integrate.mode_minimize_fire(group=all_move, dt=dt)
            while not (method.has_converged()):

                if spb:
                    pspb = [p.position for p in Spb_g]
                    """
                    print(pspb)
                    for cen in Cen_pos:
                        cent_tmp = system.particles[cen]
                        print(cent_tmp.position)
                        print(linalg.norm(np.array(pspb[0])-np.array(cent_tmp.position)))
                        print(R * microtubule_length)
                    """
                # exit()
                hoomd.run(100)
            converged = True
        except:
            converged = False
            dt /= 2.
            print(dt)
            # Restore positions
            for ip, p in enumerate(snapshot.particles.position):

                system.particles[ip].position = p
    """
    gauss.disable()

    slj=md.pair.slj(r_cut=2, nlist=nl)
    slj.pair_coeff.set(plist,plist,sigma=1,epsilon=1,r_cut=1.12)
    print("Second minimizing")
    method=md.integrate.mode_minimize_fire(group=all_beads,dt=0.05)
    while not(method.has_converged()):
       hoomd.run(100)
    """
    # hoomd.run(1000000)
    # method.disable()

    # Dumping

    if visu:
        xml = deprecated.dump.xml(filename=data_folder + "atoms.hoomdxml",
                                  period=None,
                                  group=all_beads,
                                  vis=True)
        exit()
    # gsd = dump.gsd(filename=data_folder + "atoms.gsd",period=None,group=all_beads)
    dcd = dump.dcd(filename=data_folder + 'poly.dcd',
                   period=100,
                   overwrite=True)

    # Dynamics

    t0 = time.time()
    md.integrate.mode_standard(dt=0.01)
    method = md.integrate.langevin(group=all_move, kT=1, seed=seed)
    snp = system  # .take_snapshot()

    def Change_type(typep, particle_list, snp, msg=""):
        # print(particle_list)
        for p in particle_list:
            snp.particles[p].type = typep
        if particle_list != [] and msg != "":
            print(msg)

    def Bind(typeb, bondlist, snp):
        btags = []
        for b1, b2 in bondlist:
            btags.append(snp.bonds.add(typeb, b1, b2))
        return btags

    def Release(btags, snp):
        for bt in btags:
            snp.bonds.remove(bt)

    def AddParticle(position, type):
        snp.particles.add(type)
        snp.particles[-1].position = position

    def Shift(bonds, snp):
        for tag, new in bonds:
            b = snp.bonds.get(tag)
            btype = "" + b.type
            fork = b.b + 0
            snp.bonds.remove(tag)

            # print(b.type)
            snp.bonds.add(btype, new, fork)
            # print(new,b)
            # print(dir(snp.bonds))
            # b.a = new

    group_diffu = group.type(name="Diff", type='Diff')

    if Activ_Origins != []:
        group_origin = group.type(name="Activ_Ori", type=Activ_Origins[0])
        if len(Activ_Origins) > 1:
            for t in Activ_Origins[1:]:
                group_origin = group.union(name="Activ_origin",
                                           a=group_origin,
                                           b=group.type(name="tmp", type=t))

    r_hic = []
    if dump_hic:
        group_hic = group.tags(name="hic", tag_min=0, tag_max=phic)
    # nl.tune(warmup=1,steps=1000)

    for i in range(100):

        # Chek that the microtubule length is correct
        if spb:
            for cen in Cen_pos:
                cent_tmp = system.particles[cen]
                # print(cent_tmp.position)
                d = linalg.norm(
                    np.array(pspb[0]) - np.array(cent_tmp.position))
                if d > 2 * microtubule_length:
                    print("MT too long", d)
                    exit()

        # Dump the Hi-Cs

        # system.restore_snapshot(snp)
        hoomd.run(1000)

        if dump_hic:
            ph = np.array([p.position for p in group_hic])

            D = cdist(ph, ph)
            D[D < 2] = 1
            D[D >= 2] = 0
            np.fill_diagonal(D, 0)
            if r_hic != []:
                r_hic += D
            else:
                r_hic = D
            np.save(data_folder + "/hic", r_hic)

        # snp = system.take_snapshot()

        # update the position of the monomer by updating bonds

        for iP, P in enumerate(lPolymers):
            verbose = False
            # if iP == 9:
            #    verbose = True
            bind_diff, diff_diff, shifted_bonds, \
                passivated_origin, to_release, alone = P.increment_time(
                    1, verbose)

            Change_type('P_Ori', passivated_origin, snp,
                        msg="")  # Passivated origin

            if not diff_alone:
                Shift(shifted_bonds, snp)
                # Bond tags to release (Alone particle)
                Release(to_release, snp)

                if diff_bind_when_free:
                    # Pair of diffu to attach
                    Bind("Diff_Diff", bind_diff, snp)
                    # We cannot use the single diff anymore
                    Change_type("S_Diff", alone, snp)
                    # Change type for pair of diff diff
                    Change_type("Diff", diff_diff, snp)

        group_diffu.force_update()
        group_origin.force_update()
        # Update Type because of (Ori to passivated)

        # Update group

        # Find new interacting particles

        # First check if Dimer are close from one origin

        p_diffu = np.array([p.position for p in group_diffu])
        tag_diffu = [p.tag for p in group_diffu]

        p_origin = np.array([p.position for p in group_origin])
        tag_origin = [p.tag for p in group_origin]

        if tag_diffu != [] and tag_origin != []:
            distances = cdist(p_diffu, p_origin)
            print(distances.shape)
            # Reorder the distances with the dimer tags
            Indexes = []
            PTags = []
            # t0 = time.time()
            Btags = []
            # Groups Diff-Diff by bond to compute the distances

            if diff_bind_when_free:
                for b in system.bonds:
                    if b.type == 'Diff_Diff' and system.particles[
                            b.a].type == 'Diff':
                        Indexes.append(tag_diffu.index(b.a))
                        Indexes.append(tag_diffu.index(b.b))
                        Btags.append(b.tag)
                        PTags.append([b.a, b.b])

                # print(time.time() -t0)

                d2 = distances[Indexes][::2] / 2 + distances[Indexes][1::2] / 2
            else:
                n_diffu = len(tag_diffu)
                Indexes = list(range(n_diffu))
                Btags = [None] * n_diffu
                PTags = [[t] for t in tag_diffu]
                d2 = distances[Indexes]

            activated = []
            for iD, (btag, ptags) in enumerate(zip(Btags, PTags)):
                # print(d2.shape)
                # print(d2[iD])
                for iorigin, di in enumerate(d2[iD]):
                    if iorigin in activated:
                        # Needed because we don't want an origin to be activated
                        # twice
                        continue
                    if di > cut_off_inte:
                        continue
                    if np.random.rand() > p_inte:
                        continue

                    for P in lPolymers:
                        if not P.has_origin(tag_origin[iorigin]):
                            continue

                        if diff_bind_when_free and \
                           not diff_bind_when_on_DNA:
                            Release([btag], snp)  # Break the dimer
                            btag = None  # We need btag only in the case where they stays attached

                        if not diff_alone:
                            # Or attached separatly or already bound:

                            if diff_bind_when_free:

                                # We are sure they are two and we can
                                # start
                                Change_type('F_Diff', ptags,
                                            snp)  # Diffusive element attached
                                particular_origin = tag_origin[iorigin]
                                new_btags = Bind(
                                    "Mono_Diff",
                                    [[particular_origin, ptags[0]],
                                     [particular_origin, ptags[1]]], snp)
                                Change_type('A_Ori', [particular_origin], snp)
                                activated.append(iorigin)
                                P.add_fork(ptags, particular_origin, new_btags,
                                           btag)

                            else:
                                Change_type('F_Diff', ptags,
                                            snp)  # Diffusive element attached
                                particular_origin = tag_origin[iorigin]
                                new_btags = Bind(
                                    "Mono_Diff",
                                    [[particular_origin, ptags[0]]], snp)
                                start = P.attach_one_diff(
                                    ptags[0], particular_origin, new_btags[0])

                                if start:
                                    # get particles involves
                                    p1, p2 = P.get_diff_at_origin(
                                        particular_origin)
                                    if diff_bind_when_on_DNA:
                                        btag = Bind("Diff_Diff",
                                                    [[p1[0], p2[0]]], snp)[0]

                                    Change_type('A_Ori', [particular_origin],
                                                snp)
                                    P.add_fork([p1[0], p2[0]],
                                               particular_origin,
                                               [p1[1], p2[1]], btag)

                        else:
                            # start when touched and release
                            particular_origin = tag_origin[iorigin]
                            activated.append(iorigin)
                            Change_type('A_Ori', [particular_origin], snp)
                            P.add_fork([None, None], particular_origin,
                                       [None, None], None)

                        break
                    # If we arrive there it means that one interaction has beeen
                    # found
                    break
        # t0 = time.time()
        with open(data_folder + "polymer_timing.dat", "wb") as f:
            cPickle.dump(lPolymers, f)
        # print(time.time() -t0)
        # Then if it is the case attach them according to p law to the origin

    print(gauss.get_energy(all_beads), wall_force_slj.get_energy(all_beads))
    print(time.time() - t0)
Exemple #12
0
def create_initial_configuration(traj):

    len_chrom = traj["len_chrom"]
    Cent = traj["Cent"]
    p_ribo = traj["p_ribo"]
    R = traj["R"]
    micron = traj["micron"]

    # Diffusing elements
    N_diffu = traj["N_diffu"]
    r_diffu = traj.get("diameter_diffu", 1) / 2

    # exit()
    p_origins = traj["p_origins"]

    if type(len_chrom) != list:
        len_chrom, _ = load_lengths_and_centro(len_chrom, traj["coarse"])

    if type(Cent) != list:
        _, Cent = load_lengths_and_centro(Cent, traj["coarse"])

    if type(p_origins) != list:
        p_origins = load_ori_position(traj["p_origins"], traj["ori_type"],
                                      len_chrom, traj["coarse"])
    p_ribo = [[int(position) // int(traj["coarse"] // 1000), length]
              for position, length in p_ribo]

    two_types = traj.get("two_types", False)
    p_second = traj.get("p_second", [])
    dstrength = traj.get("dstrength", 0)
    strengths = None
    if p_second != []:

        # Assign delta_strength
        if dstrength != 0:
            strengths = []
            for bands, pos in zip(p_second, p_origins):
                strengths.append([])
                for p in pos:
                    found = False
                    for Intervals in bands:
                        if Intervals[0] < p < Intervals[1]:
                            strengths[-1].append(dstrength)
                            found = True
                            break
                    if not found:
                        strengths[-1].append(1)

        ps = []
        for ch in p_second:
            ps.append([])
            for p1, p2 in ch:
                ps[-1] += range(p1, p2)
        p_second = ps

    boundaries = traj.get("boundaries", False)
    if boundaries:
        extra_boundaries = load_boundaries(coarse=traj["coarse"])
    print("strengths", strengths)
    # Yeast case
    spb = traj["spb"]
    nucleole = traj["nucleole"]
    telomere = traj["telomere"]
    microtubule_length = traj["microtubule_length"] * micron
    special_start = traj["special_start"]
    visu = traj["visu"]
    dump_hic = traj["dump_hic"]

    # Scenari
    diff_bind_when_free = traj["diff_bind_when_free"]

    # Simulation parameters

    Np = len(len_chrom)
    assert (len(len_chrom) == len(Cent) == len(p_ribo))
    if special_start:
        Sim = create_init_conf_yeast(len_chrom=len_chrom,
                                     dist_centro=Cent,
                                     p_ribo=p_ribo,
                                     Radius=R - 1,
                                     Mt=microtubule_length)
    else:
        Sim = []

    spbp = 0 if not spb else 1

    Total_particle = sum(len_chrom) + N_diffu * 2 + spbp
    list_nuc = [
        list(range(start, start + size)) if size != 0 else []
        for start, size in p_ribo
    ]
    # print(list_nuc)
    # exit()

    snapshot = data.make_snapshot(N=Total_particle,
                                  box=data.boxdim(L=2 * R),
                                  bond_types=['polymer'])

    spbb = Np if spb else 0

    if visu:
        spbb = 0

    bond_diffu = 0
    if diff_bind_when_free:
        bond_diffu = N_diffu

    snapshot.bonds.resize(sum(len_chrom) - len(len_chrom) + bond_diffu + spbb)

    bond_list = ['Mono_Mono', 'Diff_Diff', 'Mono_Diff']

    if spb:
        bond_list += ["Spb_Cen"]
    if nucleole:
        bond_list += ["Mono_Nuc", "Nuc_Nuc"]

    snapshot.bonds.types = bond_list

    plist = ['Mono', 'Ori', 'Diff', 'S_Diff', 'F_Diff', "I_Diff"]
    if two_types:
        plist.append("Mono1")

    if spb:
        plist.append("Spb")
        if visu:
            plist.append("Cen")
    if nucleole:
        plist += ['Nuc', 'A_Nuc', 'P_Nuc']

    if telomere:
        plist += ["Telo"]

    snapshot.particles.types = plist

    offset_bond = 0
    offset_particle = 0
    lPolymers = []

    ################################################
    # Polymer chains
    Cen_pos = []
    list_ori = []
    for i in range(Np):

        found_cen = False
        npp = len_chrom[i]  # Number of particles
        # Position of origin of replication
        pos_origins = p_origins[i]

        istrength = None
        if strengths is not None:
            istrength = strengths[i]

        if Sim == []:
            initp = 2 * np.random.rand(3) - 1
        else:
            # print(i)
            initp = Sim.molecules[i].coords[0]

        for p in range(npp - 1):
            inuc = 0
            if nucleole:
                if p in list_nuc[i]:
                    inuc += 1
                if p + 1 in list_nuc[i]:
                    inuc += 1

            snapshot.bonds.group[offset_bond + p] = [
                offset_particle + p, offset_particle + p + 1
            ]
            if inuc == 0:
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Mono_Mono')  # polymer_A
            if inuc == 1:
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Mono_Nuc')  # polymer_A
            if inuc == 2:
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Nuc_Nuc')  # polymer_A

        offset_bond += npp - 1

        for p in range(npp):
            # print(offset_bond, offset_bond + p)
            if Sim == []:
                new = 2 * (2 * np.random.rand(3) - 1)
                while linalg.norm(initp + new) > R - 1:
                    new = 2 * (2 * np.random.rand(3) - 1)

                initp += new
            else:
                initp = Sim.molecules[i].coords[p]

            snapshot.particles.position[offset_particle + p] = initp
            # snapshot.particles.diameter[offset_particle + p] = 1

            if p in pos_origins:
                list_ori.append(offset_particle + p)

            if visu and (p in pos_origins):
                snapshot.particles.typeid[offset_particle + p] = plist.index(
                    'Ori')  # Ori
            else:
                snapshot.particles.typeid[offset_particle + p] = plist.index(
                    'Mono')  # A
                if two_types and p in p_second[i]:
                    snapshot.particles.typeid[offset_particle +
                                              p] = plist.index('Mono1')  # A

            if spb and p == Cent[i]:
                Cen_pos.append(offset_particle + p)
                if visu:
                    snapshot.particles.typeid[offset_particle +
                                              p] = plist.index('Cen')  # A
                found_cen = True

            if nucleole and p in list_nuc[i]:
                snapshot.particles.typeid[offset_particle +
                                          p] = plist.index('Nuc')

            if telomere and (p == 0 or p == npp - 1):
                snapshot.particles.typeid[offset_particle +
                                          p] = plist.index('Telo')

            if boundaries and p in extra_boundaries[i]:
                snapshot.particles.typeid[offset_particle +
                                          p] = plist.index('Telo')

        lPolymers.append(
            Polymer(i,
                    offset_particle,
                    offset_particle + npp - 1,
                    [po + offset_particle for po in pos_origins],
                    strengths=istrength))
        offset_particle += npp

        assert (found_cen == spb)

    phic = 0
    if dump_hic:
        phic = 0 + offset_particle - 1
    ###################################################
    # SPD
    tag_spb = None
    if spb:
        tag_spb = 0 + offset_particle
        # print(tag_spb)
        # print(snapshot.particles[offset_particle])
        snapshot.particles.position[offset_particle] = [-R + 0.1, 0, 0]
        snapshot.particles.typeid[offset_particle] = plist.index('Spb')
        offset_particle += 1

        if not visu:
            for i in range(Np):
                # print(offset_particle - 1, Cen_pos[i])
                snapshot.bonds.group[offset_bond] = [
                    offset_particle - 1, Cen_pos[i]
                ]
                snapshot.bonds.typeid[offset_bond] = bond_list.index(
                    'Spb_Cen')  # polymer_A

                offset_bond += 1
    ############################################################
    # Diffusing elements
    # Defining useful classes

    # Defining particles and bonds for the simulation
    p_tag_list = []
    for i in range(N_diffu):
        npp = 2  # Number of particles

        initp = (R - 2) * (2 * np.random.rand(3) - 1)
        while linalg.norm(initp) > R - 1:
            initp = (R - 2) * (2 * np.random.rand(3) - 1)
        if diff_bind_when_free:
            for p in range(npp - 1):
                snapshot.bonds.group[offset_bond + p] = [
                    offset_particle + p, offset_particle + p + 1
                ]
                snapshot.bonds.typeid[offset_bond + p] = bond_list.index(
                    'Diff_Diff')  # Diff_Diff
            offset_bond += npp - 1

        p_tag_list.append([])
        for p in range(npp):

            # print(offset_bond, offset_bond + p)
            if diff_bind_when_free:
                new = 2 * (2 * np.random.rand(3) - 1)
                while linalg.norm(initp + new) > R - 1:
                    new = 2 * (2 * np.random.rand(3) - 1)
                    # print(initp,new,R,linalg.norm(initp + new))
                    # exit()
                initp += new
            else:
                initp = (R - 2) * (2 * np.random.rand(3) - 1)
                while linalg.norm(initp) > R - 1:
                    initp = (R - 2) * (2 * np.random.rand(3) - 1)

            snapshot.particles.position[offset_particle + p] = initp
            # snapshot.particles.mass[offset_particle + p] = r_diffu**3 * 2**3
            snapshot.particles.typeid[offset_particle + p] = plist.index(
                "Diff")  # Diffu
            p_tag_list[-1].append(offset_particle + p)
        offset_particle += npp

    # Load the configuration

    for i, p in enumerate(snapshot.bonds.group):
        if p[0] == p[1]:
            print(i, p)

    return snapshot, phic, tag_spb, bond_list, plist, Cen_pos, lPolymers, list_ori, p_tag_list
Exemple #13
0
    def test_lattice(self):
        N=128;
        latticeq = [[1,0,0,0] for i in range(N)];
        k = 10.0;
        kalt = np.exp(15);
        dx2d = np.array([0.1, 0.1, 0.0]);
        theta = np.pi/6;
        eng_check2d = round(N*k*dx2d.dot(dx2d), 3);
        dx3d = np.array([0.1, 0.1, 0.1]);
        eng_check3d = round(N*k*dx3d.dot(dx3d), 3);

        dq = np.array([np.cos(theta/2.0),0.,0.,np.sin(theta/2)])
        ddq = np.array([1.,0.,0.,0.]) - dq;
        eng_checkq = round(10.0*k*N*ddq.dot(ddq), 3);

        hexuc = hoomd.lattice.hex(a=2.0);
        self.system = init.read_snapshot(hexuc.get_snapshot());
        self.system.replicate(nx=8, ny=8, nz=1);

        self.snapshot2d = self.system.take_snapshot(particles=True); #data.make_snapshot(N=N, box=data.boxdim(L=L, dimensions=3), particle_types=['A'])
        lattice2d = [];
        if hoomd.comm.get_rank() == 0:
            lattice2d = self.snapshot2d.particles.position[:];

        self.snapshot2d_s = data.make_snapshot(N=N, box=self.system.box, particle_types=['A']);
        if hoomd.comm.get_rank() == 0:
            self.snapshot2d_s.particles.position[:] = self.snapshot2d.particles.position[:]+dx2d;
            self.snapshot2d_s.particles.orientation[:] = np.array([dq for _ in range(N)]);
        del self.system
        context.initialize();

        bccuc = hoomd.lattice.bcc(a=2.0);
        self.system = init.read_snapshot(bccuc.get_snapshot());
        self.system.replicate(nx=4, ny=4, nz=4);
        self.snapshot3d = self.system.take_snapshot(particles=True); #data.make_snapshot(N=N, box=data.boxdim(L=L, dimensions=3), particle_types=['A'])
        lattice3d = [];
        if hoomd.comm.get_rank() == 0:
            lattice3d = self.snapshot3d.particles.position[:];
        self.snapshot3d_s = data.make_snapshot(N=N, box=self.system.box, particle_types=['A']);
        if hoomd.comm.get_rank() == 0:
            self.snapshot3d_s.particles.position[:] = self.snapshot3d.particles.position[:]+dx3d;
            self.snapshot3d_s.particles.orientation[:] = np.array([dq for _ in range(N)]);
        del self.system
        context.initialize();

        # sphere
        print("****************************************")
        print("*               sphere                 *")
        print("****************************************")
        # d = 0.0014284726343172743, p = 0.20123046875
        uein = 1.5 # kT
        diam = 1.0;
        self.system = init.read_snapshot(self.snapshot3d)
        self.mc = hpmc.integrate.sphere(seed=2398, d=0.0)
        self.mc.shape_param.set('A', diameter=diam)
        self.run_test(latticep=lattice3d, latticeq=[], k=k, kalt=kalt, q=0, qalt=0, uein=1.5, snapshot_s=self.snapshot3d_s, eng_check=eng_check3d, d=0.001428 );
        self.tear_down()

        # ellipsoid
        print("****************************************")
        print("*              ellipsoid               *")
        print("****************************************")
        # a = 0.00038920117896296716, p = 0.2035860456051452
        # d = 0.0014225507698958867, p = 0.19295361127422195
        a = 0.5;
        b = 0.54;
        c = 0.35;
        uein = 3.0 # kT
        self.system = init.read_snapshot(self.snapshot3d)
        self.mc = hpmc.integrate.ellipsoid(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', a=a, b=b, c=c)
        self.run_test(latticep=lattice3d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=3.0, snapshot_s=self.snapshot3d_s, eng_check=(eng_check3d+eng_checkq), a = 0.000389, d = 0.001423);
        self.tear_down()

        # convex_polygon
        print("****************************************")
        print("*           convex_polygon             *")
        print("****************************************")
        # a = 0.001957745443687172, p = 0.19863574351978172
        # d = 0.0017185407622231329, p = 0.2004306126443531
        self.system = init.read_snapshot(self.snapshot2d)
        v = 0.33*np.array([(-1,-1), (1,-1), (1,1), (-1,1)]);
        self.mc = hpmc.integrate.convex_polygon(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v)
        self.run_test(latticep=lattice2d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=1.5, snapshot_s=self.snapshot2d_s, eng_check=(eng_check2d+eng_checkq), a = 0.001958, d = 0.001719);
        self.tear_down()


        # convex_spheropolygon
        print("****************************************")
        print("*        convex_spheropolygon          *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot2d)
        v = 0.33*np.array([(-1,-1), (1,-1), (1,1), (-1,1)]);
        r = 0.1234;
        self.mc = hpmc.integrate.convex_spheropolygon(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.run_test(latticep=lattice2d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=None, snapshot_s=self.snapshot2d_s, eng_check=(eng_check2d+eng_checkq));
        self.tear_down()

        #simple_polygon
        print("****************************************")
        print("*           simple_polygon             *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot2d)
        v = 0.33*np.array([(-1,-1), (1,-1), (1,1), (-1,1)]);
        self.mc = hpmc.integrate.simple_polygon(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v)
        self.run_test(latticep=lattice2d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=None, snapshot_s=self.snapshot2d_s, eng_check=(eng_check2d+eng_checkq));
        self.tear_down()

        # polyhedron
        print("****************************************")
        print("*             polyhedron               *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33*np.array([(-0.5, -0.5, -0.5), (-0.5, -0.5, 0.5), (-0.5, 0.5, -0.5), (-0.5, 0.5, 0.5), (0.5, -0.5, -0.5), (0.5, -0.5, 0.5), (0.5, 0.5, -0.5), (0.5, 0.5, 0.5)]);
        f = [(7, 3, 1, 5), (7, 5, 4, 6), (7, 6, 2, 3), (3, 2, 0, 1), (0, 2, 6, 4), (1, 0, 4, 5)];
        r = 0.0;
        self.mc = hpmc.integrate.polyhedron(seed=10);
        self.mc.shape_param.set('A', vertices=v, faces =f, sweep_radius=r);
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        diff = (np.array(f) - np.array(self.mc.shape_param['A'].faces)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r);
        del self.mc
        del self.system
        context.initialize()

        # convex_polyhedron
        print("****************************************")
        print("*          convex_polyhedron           *")
        print("****************************************")
        #a = 0.00038920117896296716, p = 0.2035860456051452
        #d = 0.0014225507698958867, p = 0.19295361127422195
        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33*np.array([(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1),(1,1,-1), (1,-1,-1), (-1,-1,-1), (-1,1,-1)]);
        self.mc = hpmc.integrate.convex_polyhedron(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v)
        self.run_test(latticep=lattice3d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=3.0, snapshot_s=self.snapshot3d_s, eng_check=(eng_check3d+eng_checkq), a = 0.0003892, d = 0.00142255);
        self.tear_down()

        # convex_spheropolyhedron
        print("****************************************")
        print("*       convex_spheropolyhedron        *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33*np.array([(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1),(1,1,-1), (1,-1,-1), (-1,-1,-1), (-1,1,-1)]);
        r = 0.1234;
        self.mc = hpmc.integrate.convex_spheropolyhedron(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        self.run_test(latticep=lattice3d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=None, snapshot_s=self.snapshot3d_s, eng_check=(eng_check3d+eng_checkq));
        self.tear_down()

        # faceted_sphere
        print("****************************************")
        print("*            faceted_sphere            *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        v =  0.33*np.array([(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1),(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)]);
        offs = [-1]*6;
        norms =[(-1,0,0), (1,0,0), (0,1,0,), (0,-1,0), (0,0,1), (0,0,-1)];
        diam = 1.0;
        orig = (0,0,0);
        self.mc = hpmc.integrate.faceted_sphere(seed=10, d=0.0, a=0.0);
        self.mc.shape_param.set('A', normals=norms,
                                    offsets=offs,
                                    vertices=v,
                                    diameter=diam,
                                    origin=orig);
        self.run_test(latticep=lattice3d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=None, snapshot_s=self.snapshot3d_s, eng_check=(eng_check3d+eng_checkq));
        self.tear_down()

        # sphinx
        print("****************************************")
        print("*               sphinx                 *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        cent = [(0,0,0), (0,0,1.15), (0,0,-1.15)]
        diams = [1,-1.2,-1.2];
        self.mc = hpmc.integrate.sphinx(seed=10, d=0.0, a=0.0);
        self.mc.shape_param.set('A', diameters=diams, centers=cent);
        self.run_test(latticep=lattice3d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=None, snapshot_s=self.snapshot3d_s, eng_check=(eng_check3d+eng_checkq));
        self.tear_down()

        # sphere_union
        print("****************************************")
        print("*            sphere_union              *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        cent = [(0,0,0), (0,0,0.15), (0,0,-0.15)]
        diams = [1,1,1];
        self.mc = hpmc.integrate.sphere_union(seed=10, d=0.0, a=0.0);
        self.mc.shape_param.set('A', diameters=diams, centers=cent);
        self.run_test(latticep=lattice3d, latticeq=latticeq, k=k, kalt=kalt, q=k*10.0, qalt=kalt*10.0, uein=None, snapshot_s=self.snapshot3d_s, eng_check=(eng_check3d+eng_checkq));
        self.tear_down()
Exemple #14
0
    def test_access(self):
        N=2
        L=10
        context.initialize()
        self.snapshot = data.make_snapshot(N=N, box=data.boxdim(L=L, dimensions=2), particle_types=['A'])

        # sphere
        diam = 1.125;
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.sphere(seed=2398, d=0.0)
        self.mc.shape_param.set('A', diameter=diam)
        self.assertAlmostEqual(self.mc.shape_param['A'].diameter, diam);
        del self.mc
        del self.system
        context.initialize()
        # ellipsoid
        a = 1.125;
        b = 0.238;
        c = 2.25;
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.ellipsoid(seed=2398, d=0.0)
        self.mc.shape_param.set('A', a=a, b=b, c=c)
        self.assertAlmostEqual(self.mc.shape_param['A'].a, a);
        self.assertAlmostEqual(self.mc.shape_param['A'].b, b);
        self.assertAlmostEqual(self.mc.shape_param['A'].c, c);
        del self.mc
        del self.system
        context.initialize()


        # convex_polygon
        v = [(-1,-1), (1,-1), (1,1), (-1,1)];
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_polygon(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v)
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        del self.mc
        del self.system
        context.initialize()

        # convex_spheropolygon
        v = [(-1,-1), (1,-1), (1,1), (-1,1)];
        r = 0.1234;
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_spheropolygon(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r);
        del self.mc
        del self.system
        context.initialize()

        #simple_polygon
        v = [(-1,-1), (1,-1), (1,1), (-1,1)];
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.simple_polygon(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v)
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        del self.mc
        del self.system
        context.initialize()

        # polyhedron
        import math
        v = [(-0.5, -0.5, 0), (-0.5, 0.5, 0), (0.5, -0.5, 0), (0.5, 0.5, 0), (0,0, 1.0/math.sqrt(2)),(0,0,-1.0/math.sqrt(2))];
        f = [(0,4,1),(1,4,2),(2,4,3),(3,4,0),(0,5,1),(1,5,2),(2,5,3),(3,5,0)]
        r = 0.0;
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.polyhedron(seed=10);
        self.mc.shape_param.set('A', vertices=v, faces =f, sweep_radius=r);
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        diff = (np.array(f) - np.array(self.mc.shape_param['A'].faces)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r);
        del self.mc
        del self.system
        context.initialize()

        # convex_polyhedron
        v = [(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1),(1,1,-1), (1,-1,-1), (-1,-1,-1), (-1,1,-1)];
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_polyhedron(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v)
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        del self.mc
        del self.system
        context.initialize()

        # convex_spheropolyhedron
        v = [(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1),(1,1,-1), (1,-1,-1), (-1,-1,-1), (-1,1,-1)];
        r = 0.1234;
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.convex_spheropolyhedron(seed=2398, d=0.1, a=0.1)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r);
        del self.mc
        del self.system
        context.initialize()

        # faceted_sphere
        v =  [(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1),(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)];
        offs = [-1]*6;
        norms =[(-1,0,0), (1,0,0), (0,1,0,), (0,-1,0), (0,0,1), (0,0,-1)];
        diam = 2;
        orig = (0,0,0);
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.faceted_sphere(seed=10);
        self.mc.shape_param.set('A', normals=norms,
                                    offsets=offs,
                                    vertices=v,
                                    diameter=diam,
                                    origin=orig);

        diff = (np.array(v) - np.array(self.mc.shape_param['A'].vertices)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        diff = (np.array(offs) - np.array(self.mc.shape_param['A'].offsets)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        diff = (np.array(norms) - np.array(self.mc.shape_param['A'].normals)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        diff = (np.array(orig) - np.array(self.mc.shape_param['A'].origin)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        self.assertAlmostEqual(self.mc.shape_param['A'].diameter, diam);
        del self.mc
        del self.system
        context.initialize()

        # sphinx
        # GPU Sphinx is not built on most the time
        if not hoomd.context.exec_conf.isCUDAEnabled():
            cent = [(0,0,0), (0,0,1.15), (0,0,-1.15)]
            diams = [2,-2.2,-2.2];
            self.system = init.read_snapshot(self.snapshot)
            self.mc = hpmc.integrate.sphinx(seed=10);
            self.mc.shape_param.set('A', diameters=diams, centers=cent);
            diff = (np.array(cent) - np.array(self.mc.shape_param['A'].centers)).flatten();
            self.assertAlmostEqual(diff.dot(diff), 0);
            diff = (np.array(diams) - np.array(self.mc.shape_param['A'].diameters)).flatten();
            self.assertAlmostEqual(diff.dot(diff), 0);
            del self.mc
            del self.system
            context.initialize()

        # sphere_union
        cent = [(0,0,0), (0,0,1.15), (0,0,-1.15)]
        diams = [2,2.2,1.75];
        self.system = init.read_snapshot(self.snapshot)
        self.mc = hpmc.integrate.sphere_union(seed=10);
        self.mc.shape_param.set('A', diameters=diams, centers=cent);
        diff = (np.array(cent) - np.array(self.mc.shape_param['A'].centers)).flatten();
        self.assertAlmostEqual(diff.dot(diff), 0);
        for i,m in enumerate(self.mc.shape_param['A'].members):
            self.assertAlmostEqual(m.diameter, diams[i]);
        del self.mc
        del self.system
        del self.snapshot
        context.initialize()
    def test_lattice(self):
        N = 128
        latticeq = [[1, 0, 0, 0] for i in range(N)]
        k = 10.0
        kalt = np.exp(15)
        dx2d = np.array([0.1, 0.1, 0.0])
        theta = np.pi / 6
        eng_check2d = round(N * k * dx2d.dot(dx2d), 3)
        dx3d = np.array([0.1, 0.1, 0.1])
        eng_check3d = round(N * k * dx3d.dot(dx3d), 3)

        dq = np.array([np.cos(theta / 2.0), 0., 0., np.sin(theta / 2)])
        ddq = np.array([1., 0., 0., 0.]) - dq
        eng_checkq = round(10.0 * k * N * ddq.dot(ddq), 3)

        hexuc = hoomd.lattice.hex(a=2.0)
        self.system = init.read_snapshot(hexuc.get_snapshot())
        self.system.replicate(nx=8, ny=8, nz=1)

        self.snapshot2d = self.system.take_snapshot(particles=True)
        #data.make_snapshot(N=N, box=data.boxdim(L=L, dimensions=3), particle_types=['A'])
        lattice2d = []
        if hoomd.comm.get_rank() == 0:
            lattice2d = self.snapshot2d.particles.position[:]

        self.snapshot2d_s = data.make_snapshot(N=N,
                                               box=self.system.box,
                                               particle_types=['A'])
        if hoomd.comm.get_rank() == 0:
            self.snapshot2d_s.particles.position[:] = self.snapshot2d.particles.position[:] + dx2d
            self.snapshot2d_s.particles.orientation[:] = np.array(
                [dq for _ in range(N)])
        del self.system
        context.initialize()

        bccuc = hoomd.lattice.bcc(a=2.0)
        self.system = init.read_snapshot(bccuc.get_snapshot())
        self.system.replicate(nx=4, ny=4, nz=4)
        self.snapshot3d = self.system.take_snapshot(particles=True)
        #data.make_snapshot(N=N, box=data.boxdim(L=L, dimensions=3), particle_types=['A'])
        lattice3d = []
        if hoomd.comm.get_rank() == 0:
            lattice3d = self.snapshot3d.particles.position[:]
        self.snapshot3d_s = data.make_snapshot(N=N,
                                               box=self.system.box,
                                               particle_types=['A'])
        if hoomd.comm.get_rank() == 0:
            self.snapshot3d_s.particles.position[:] = self.snapshot3d.particles.position[:] + dx3d
            self.snapshot3d_s.particles.orientation[:] = np.array(
                [dq for _ in range(N)])
        del self.system
        context.initialize()

        # sphere
        print("****************************************")
        print("*               sphere                 *")
        print("****************************************")
        # d = 0.0014284726343172743, p = 0.20123046875
        uein = 1.5  # kT
        diam = 1.0
        self.system = init.read_snapshot(self.snapshot3d)
        self.mc = hpmc.integrate.sphere(seed=2398, d=0.0)
        self.mc.shape_param.set('A', diameter=diam)
        self.run_test(latticep=lattice3d,
                      latticeq=[],
                      k=k,
                      kalt=kalt,
                      q=0,
                      qalt=0,
                      uein=1.5,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=eng_check3d,
                      d=0.001428)
        self.tear_down()

        # ellipsoid
        print("****************************************")
        print("*              ellipsoid               *")
        print("****************************************")
        # a = 0.00038920117896296716, p = 0.2035860456051452
        # d = 0.0014225507698958867, p = 0.19295361127422195
        a = 0.5
        b = 0.54
        c = 0.35
        uein = 3.0  # kT
        self.system = init.read_snapshot(self.snapshot3d)
        self.mc = hpmc.integrate.ellipsoid(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', a=a, b=b, c=c)
        self.run_test(latticep=lattice3d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=3.0,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=(eng_check3d + eng_checkq),
                      a=0.000389,
                      d=0.001423)
        self.tear_down()

        # convex_polygon
        print("****************************************")
        print("*           convex_polygon             *")
        print("****************************************")
        # a = 0.001957745443687172, p = 0.19863574351978172
        # d = 0.0017185407622231329, p = 0.2004306126443531
        self.system = init.read_snapshot(self.snapshot2d)
        v = 0.33 * np.array([(-1, -1), (1, -1), (1, 1), (-1, 1)])
        self.mc = hpmc.integrate.convex_polygon(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v)
        self.run_test(latticep=lattice2d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=1.5,
                      snapshot_s=self.snapshot2d_s,
                      eng_check=(eng_check2d + eng_checkq),
                      a=0.001958,
                      d=0.001719)
        self.tear_down()

        # convex_spheropolygon
        print("****************************************")
        print("*        convex_spheropolygon          *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot2d)
        v = 0.33 * np.array([(-1, -1), (1, -1), (1, 1), (-1, 1)])
        r = 0.1234
        self.mc = hpmc.integrate.convex_spheropolygon(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.run_test(latticep=lattice2d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=None,
                      snapshot_s=self.snapshot2d_s,
                      eng_check=(eng_check2d + eng_checkq))
        self.tear_down()

        #simple_polygon
        print("****************************************")
        print("*           simple_polygon             *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot2d)
        v = 0.33 * np.array([(-1, -1), (1, -1), (1, 1), (-1, 1)])
        self.mc = hpmc.integrate.simple_polygon(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v)
        self.run_test(latticep=lattice2d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=None,
                      snapshot_s=self.snapshot2d_s,
                      eng_check=(eng_check2d + eng_checkq))
        self.tear_down()

        # polyhedron
        print("****************************************")
        print("*             polyhedron               *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33 * np.array([(-0.5, -0.5, -0.5), (-0.5, -0.5, 0.5),
                             (-0.5, 0.5, -0.5), (-0.5, 0.5, 0.5),
                             (0.5, -0.5, -0.5), (0.5, -0.5, 0.5),
                             (0.5, 0.5, -0.5), (0.5, 0.5, 0.5)])
        f = [(7, 3, 1, 5), (7, 5, 4, 6), (7, 6, 2, 3), (3, 2, 0, 1),
             (0, 2, 6, 4), (1, 0, 4, 5)]
        r = 0.0
        self.mc = hpmc.integrate.polyhedron(seed=10)
        self.mc.shape_param.set('A', vertices=v, faces=f, sweep_radius=r)
        diff = (np.array(v) -
                np.array(self.mc.shape_param['A'].vertices)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        diff = (np.array(f) -
                np.array(self.mc.shape_param['A'].faces)).flatten()
        self.assertAlmostEqual(diff.dot(diff), 0)
        self.assertAlmostEqual(self.mc.shape_param['A'].sweep_radius, r)
        del self.mc
        del self.system
        context.initialize()

        # convex_polyhedron
        print("****************************************")
        print("*          convex_polyhedron           *")
        print("****************************************")
        #a = 0.00038920117896296716, p = 0.2035860456051452
        #d = 0.0014225507698958867, p = 0.19295361127422195
        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33 * np.array([(1, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1),
                             (1, 1, -1), (1, -1, -1), (-1, -1, -1),
                             (-1, 1, -1)])
        self.mc = hpmc.integrate.convex_polyhedron(seed=2398, d=0.0, a=0.0)
        self.mc.shape_param.set('A', vertices=v)
        self.run_test(latticep=lattice3d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=3.0,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=(eng_check3d + eng_checkq),
                      a=0.0003892,
                      d=0.00142255)
        self.tear_down()

        # convex_spheropolyhedron
        print("****************************************")
        print("*       convex_spheropolyhedron        *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33 * np.array([(1, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1),
                             (1, 1, -1), (1, -1, -1), (-1, -1, -1),
                             (-1, 1, -1)])
        r = 0.1234
        self.mc = hpmc.integrate.convex_spheropolyhedron(seed=2398,
                                                         d=0.0,
                                                         a=0.0)
        self.mc.shape_param.set('A', vertices=v, sweep_radius=r)
        self.run_test(latticep=lattice3d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=None,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=(eng_check3d + eng_checkq))
        self.tear_down()

        # faceted_sphere
        print("****************************************")
        print("*            faceted_sphere            *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        v = 0.33 * np.array([(-1, -1, -1), (-1, -1, 1), (-1, 1, -1),
                             (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, -1),
                             (1, 1, 1)])
        offs = [-1] * 6
        norms = [(-1, 0, 0), (1, 0, 0), (
            0,
            1,
            0,
        ), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
        diam = 1.0
        orig = (0, 0, 0)
        self.mc = hpmc.integrate.faceted_sphere(seed=10, d=0.0, a=0.0)
        self.mc.shape_param.set('A',
                                normals=norms,
                                offsets=offs,
                                vertices=v,
                                diameter=diam,
                                origin=orig)
        self.run_test(latticep=lattice3d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=None,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=(eng_check3d + eng_checkq))
        self.tear_down()

        # sphinx
        print("****************************************")
        print("*               sphinx                 *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        cent = [(0, 0, 0), (0, 0, 1.15), (0, 0, -1.15)]
        diams = [1, -1.2, -1.2]
        self.mc = hpmc.integrate.sphinx(seed=10, d=0.0, a=0.0)
        self.mc.shape_param.set('A', diameters=diams, centers=cent)
        self.run_test(latticep=lattice3d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=None,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=(eng_check3d + eng_checkq))
        self.tear_down()

        # sphere_union
        print("****************************************")
        print("*            sphere_union              *")
        print("****************************************")

        self.system = init.read_snapshot(self.snapshot3d)
        cent = [(0, 0, 0), (0, 0, 0.15), (0, 0, -0.15)]
        diams = [1, 1, 1]
        self.mc = hpmc.integrate.sphere_union(seed=10, d=0.0, a=0.0)
        self.mc.shape_param.set('A', diameters=diams, centers=cent)
        self.run_test(latticep=lattice3d,
                      latticeq=latticeq,
                      k=k,
                      kalt=kalt,
                      q=k * 10.0,
                      qalt=kalt * 10.0,
                      uein=None,
                      snapshot_s=self.snapshot3d_s,
                      eng_check=(eng_check3d + eng_checkq))
        self.tear_down()
Exemple #16
0
def create_empty(**kwargs):
    snap = data.make_snapshot(**kwargs)
    return init.read_snapshot(snap)
Exemple #17
0
    def setUp(self):
        snap = data.make_snapshot(N=0, box=data.boxdim(Lx=10, Ly=10, Lz=10))

        self.system = init.read_snapshot(snap)
        self.mc = hpmc.integrate.convex_polyhedron(seed=123)