""" Script that trains graph-conv models on HOPV dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import numpy as np np.random.seed(123) import tensorflow as tf tf.set_random_seed(123) import deepchem as dc from hopv_datasets import load_hopv # Load HOPV dataset hopv_tasks, hopv_datasets, transformers = load_hopv(featurizer='GraphConv') train_dataset, valid_dataset, test_dataset = hopv_datasets # Fit models metric = [ dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean, mode="regression"), dc.metrics.Metric(dc.metrics.mean_absolute_error, np.mean, mode="regression") ] # Number of features on conv-mols n_feat = 75 # Batch size of models batch_size = 50 graph_model = dc.nn.SequentialGraph(n_feat)
Script that trains multitask models on HOPV dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import numpy as np import deepchem as dc from hopv_datasets import load_hopv # Only for debug! np.random.seed(123) # Load HOPV dataset n_features = 1024 hopv_tasks, hopv_datasets, transformers = load_hopv() train_dataset, valid_dataset, test_dataset = hopv_datasets # Fit models metric = [ dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean, mode="regression"), dc.metrics.Metric( dc.metrics.mean_absolute_error, np.mean, mode="regression") ] model = dc.models.TensorflowMultiTaskRegressor( len(hopv_tasks), n_features, layer_sizes=[1000], dropouts=[.25], learning_rate=0.001,
""" Script that trains graph-conv models on HOPV dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import numpy as np np.random.seed(123) import tensorflow as tf tf.set_random_seed(123) import deepchem as dc from hopv_datasets import load_hopv # Load HOPV dataset hopv_tasks, hopv_datasets, transformers = load_hopv(featurizer='GraphConv') train_dataset, valid_dataset, test_dataset = hopv_datasets # Fit models metric = [ dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean, mode="regression"), dc.metrics.Metric( dc.metrics.mean_absolute_error, np.mean, mode="regression") ] # Number of features on conv-mols n_feat = 75 # Batch size of models batch_size = 50 graph_model = dc.nn.SequentialGraph(n_feat) graph_model.add(dc.nn.GraphConv(64, n_feat, activation='relu'))