def _allreduce_async(tensor, output, name, op, prescale_factor, postscale_factor, process_set: ProcessSet): # Set the divisor for reduced gradients to average when necessary if op == Average: if rocm_built(): # For ROCm, perform averaging at framework level divisor = size() op = Sum else: divisor = 1 elif op == Adasum: if process_set != global_process_set: raise NotImplementedError( "Adasum does not support non-global process sets yet.") if tensor.device.type != 'cpu' and gpu_available('torch'): if nccl_built(): if not is_homogeneous(): raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.' ) elif not num_rank_is_power_2(int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.' ) if rocm_built(): # For ROCm, perform averaging at framework level divisor = local_size() else: divisor = 1 else: warnings.warn( 'Adasum reduction does not currently support GPU reduction using MPI. Tensors are ' 'copied to CPU memory instead. To use Adasum for GPU reduction, please compile Horovod ' 'with HOROVOD_GPU_OPERATIONS=NCCL.') divisor = 1 else: if not num_rank_is_power_2(size()): raise NotImplementedError( 'Running Adasum with non-power of 2 ranks is not supported yet.' ) divisor = 1 else: divisor = 1 function = _check_function(_allreduce_function_factory, tensor) try: handle = getattr(mpi_lib, function)( tensor, output, divisor, name.encode() if name is not None else _NULL, op, prescale_factor, postscale_factor, process_set.process_set_id) except RuntimeError as e: raise HorovodInternalError(e) _handle_map[handle] = (tensor, output) return handle
def _allreduce_async(tensor, output, name, op): if tensor.dtype == torch.float16 and not _fp16_supported: raise NotImplementedError( 'float16 allreduce is not supported for PyTorch version {} < 1.0.0' .format(torch.__version__)) # Set the divisor for reduced gradients to average when necessary if op == Average: divisor = size() elif op == Adasum: if tensor.device.type != 'cpu' and gpu_available('torch'): if nccl_built(): if not is_homogeneous(): raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.' ) elif not num_rank_is_power_2(int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.' ) divisor = local_size() else: warnings.warn( 'Adasum reduction does not currently support GPU reduction using MPI. Tensors are ' 'copied to CPU memory instead. To use Adasum for GPU reduction, please compile Horovod ' 'with HOROVOD_GPU_OPERATIONS=NCCL.') divisor = 1 else: if not num_rank_is_power_2(size()): raise NotImplementedError( 'Running Adasum with non-power of 2 ranks is not supported yet.' ) divisor = 1 else: divisor = 1 # Averaging happens in framework code, so translate that to Sum for the actual call true_op = Sum if op == Average else op function = _check_function(_allreduce_function_factory, tensor) try: handle = getattr(mpi_lib, function)( tensor, output, divisor, name.encode() if name is not None else _NULL, true_op) except RuntimeError as e: raise HorovodInternalError(e) _handle_map[handle] = (tensor, output) return handle
def allreduce(tensor, average=None, device_dense='', device_sparse='', compression=Compression.none, op=None, prescale_factor=1.0, postscale_factor=1.0, name=None): """Perform an allreduce on a tf.Tensor or tf.IndexedSlices. This function performs a bandwidth-optimal ring allreduce on the input tensor. If the input is an tf.IndexedSlices, the function instead does an allgather on the values and the indices, effectively doing an allreduce on the represented tensor. Arguments: tensor: tf.Tensor, tf.Variable, or tf.IndexedSlices to reduce. The shape of the input must be identical across all ranks. average: .. warning:: .. deprecated:: 0.19.0 Use `op` instead. Will be removed in v0.21.0. device_dense: Device to be used for dense tensors. Uses GPU by default if Horovod was built with HOROVOD_GPU_OPERATIONS. device_sparse: Device to be used for sparse tensors. Uses GPU by default if Horovod was built with HOROVOD_GPU_OPERATIONS. compression: Compression algorithm used to reduce the amount of data sent and received by each worker node. Defaults to not using compression. op: The reduction operation to combine tensors across different ranks. Defaults to Average if None is given. prescale_factor: Multiplicative factor to scale tensor before allreduce. postscale_factor: Multiplicative factor to scale tensor after allreduce. name: A name of the allreduce operation Returns: A tensor of the same shape and type as `tensor`, summed across all processes. """ op = handle_average_backwards_compatibility(op, average) if isinstance(tensor, tf.IndexedSlices): # TODO: Need to fix this to actuall call Adasum if op == Adasum: raise NotImplementedError( 'The Adasum reduction does not currently support sparse tensors. As a ' 'workaround please pass sparse_as_dense=True to DistributedOptimizer' ) with tf.device(device_sparse): # For IndexedSlices, do two allgathers instead of an allreduce. horovod_size = tf.cast(size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else size(), dtype=tensor.values.dtype) values = allgather(tensor.values) indices = allgather(tensor.indices) # To make this operation into an average, divide allgathered values by # the Horovod size. new_values = (values / horovod_size) if op == Average else values return tf.IndexedSlices(new_values, indices, dense_shape=tensor.dense_shape) else: average_in_framework = False if rocm_built(): # For ROCm, perform averaging at framework level average_in_framework = op == Average or op == Adasum op = Sum if op == Average else op with tf.device(device_dense): horovod_size = tf.cast(size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else size(), dtype=tensor.dtype) tensor_compressed, ctx = compression.compress(tensor) summed_tensor_compressed = _allreduce( tensor_compressed, op=op, prescale_factor=prescale_factor, postscale_factor=postscale_factor, name=name) summed_tensor = compression.decompress(summed_tensor_compressed, ctx) if op == Adasum: if 'CPU' not in tensor.device and gpu_available('tensorflow'): if nccl_built(): if not is_homogeneous: raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.' ) elif not check_num_rank_power_of_2( int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.' ) if rocm_built(): horovod_local_size = tf.cast( local_size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else local_size(), dtype=tensor.dtype) new_tensor = summed_tensor / horovod_local_size else: new_tensor = summed_tensor else: warnings.warn( 'Adasum reduction does not currently support GPU reduction using MPI. Tensors ' 'are copied to CPU memory instead. To use Adasum for GPU reduction, please ' 'compile Horovod with HOROVOD_GPU_OPERATIONS=NCCL.' ) new_tensor = summed_tensor else: if not check_num_rank_power_of_2(size()): raise NotImplementedError( 'Running Adasum with non-power of 2 ranks is not supported yet.' ) new_tensor = summed_tensor else: if rocm_built(): new_tensor = (summed_tensor / horovod_size ) if average_in_framework else summed_tensor else: new_tensor = summed_tensor return new_tensor
def grouped_allreduce(tensors, average=None, device_dense='', device_sparse='', compression=Compression.none, op=None, prescale_factor=1.0, postscale_factor=1.0): if not tensors: return tensors op = handle_average_backwards_compatibility(op, average) average_in_framework = False if rocm_built(): # For ROCm, perform averaging at framework level average_in_framework = op == Average or op == Adasum op = Sum if op == Average else op if any(isinstance(t, tf.IndexedSlices) for t in tensors): # TODO: Need to fix this to actuall call Adasum if op == Adasum: raise NotImplementedError( 'The Adasum reduction does not currently support sparse tensors. As a ' 'workaround please pass sparse_as_dense=True to DistributedOptimizer' ) with tf.device(device_sparse): new_values = [] for tensor in tensors: # For IndexedSlices, do two allgathers instead of an allreduce. horovod_size = tf.cast(size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else size(), dtype=tensor.values.dtype) values = allgather(tensor.values) indices = allgather(tensor.indices) # To make this operation into an average, divide allgathered values by # the Horovod size. new_values += (values / horovod_size) if op == Average else values return [ tf.IndexedSlices(x, indices, dense_shape=t.dense_shape) for x, t in zip(new_values, tensors) ] else: with tf.device(device_dense): tensors_compressed, ctxs = zip( *[compression.compress(tensor) for tensor in tensors]) summed_tensors_compressed = _grouped_allreduce( tensors_compressed, op=op, prescale_factor=prescale_factor, postscale_factor=postscale_factor) summed_tensors = [ compression.decompress(t, ctx) for t, ctx in zip(summed_tensors_compressed, ctxs) ] if op == Adasum: if 'CPU' not in tensor.device and gpu_available('tensorflow'): if nccl_built(): if not is_homogeneous: raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.' ) elif not check_num_rank_power_of_2( int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.' ) if rocm_built(): new_tensors = [] for tensor in summed_tensors: horovod_local_size = tf.cast( local_size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else local_size(), dtype=tensor.dtype) new_tensors += tensor / horovod_local_size else: new_tensors = summed_tensors else: warnings.warn( 'Adasum reduction does not currently support GPU reduction using MPI. Tensors ' 'are copied to CPU memory instead. To use Adasum for GPU reduction, please ' 'compile Horovod with HOROVOD_GPU_OPERATIONS=NCCL.' ) new_tensors = summed_tensors else: if not check_num_rank_power_of_2(size()): raise NotImplementedError( 'Running Adasum with non-power of 2 ranks is not supported yet.' ) new_tensors = summed_tensors else: if rocm_built(): new_tensors = [] for tensor in summed_tensors: horovod_size = tf.cast(size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else size(), dtype=tensor.dtype) new_tensors += ( tensor / horovod_size) if average_in_framework else tensor else: new_tensors = summed_tensors return new_tensors
from horovod.tensorflow.mpi_ops import allgather, broadcast, _allreduce from horovod.tensorflow.mpi_ops import init, shutdown from horovod.tensorflow.mpi_ops import size, local_size, rank, local_rank, is_homogeneous from horovod.tensorflow.mpi_ops import mpi_threads_supported, mpi_enabled, mpi_built from horovod.tensorflow.mpi_ops import gloo_enabled, gloo_built from horovod.tensorflow.mpi_ops import nccl_built, ddl_built, mlsl_built from horovod.tensorflow.mpi_ops import Average, Sum, Adasum from horovod.tensorflow.mpi_ops import _check_has_gpu from horovod.tensorflow.mpi_ops import handle_average_backwards_compatibility, check_num_rank_power_of_2 from horovod.tensorflow.util import _executing_eagerly, _make_subgraph, _cache import tensorflow as tf import warnings has_gpu = gpu_available('tensorflow') def allreduce(tensor, average=None, device_dense='', device_sparse='', compression=Compression.none, op=None): """Perform an allreduce on a tf.Tensor or tf.IndexedSlices. This function performs a bandwidth-optimal ring allreduce on the input tensor. If the input is an tf.IndexedSlices, the function instead does an allgather on the values and the indices, effectively doing an allreduce on the represented tensor.
Adasum = _basics.Adasum is_homogeneous = _basics.is_homogeneous handle_average_backwards_compatibility = get_average_backwards_compatibility_fun( _basics) # Schema: handle -> input, output # We keep input in order to make sure it does not get garbage collected # before the operation is finished. _handle_map = {} # Only support fp16 allreduce for PyTorch versions using v2 API. _fp16_supported = _v2_api _has_gpu = gpu_available('torch') def _check_function(function_factory, tensor): function = function_factory(tensor) if not hasattr(mpi_lib, function): raise ValueError('Tensor type %s is not supported.' % tensor.type()) if not tensor.is_contiguous(): raise ValueError('Tensor is required to be contiguous.') return function def _allreduce_function_factory(tensor): return 'horovod_torch_allreduce_async_' + tensor.type().replace('.', '_')
def allreduce(tensor, average=None, device_dense='', device_sparse='', compression=Compression.none, op=None): """Perform an allreduce on a tf.Tensor or tf.IndexedSlices. This function performs a bandwidth-optimal ring allreduce on the input tensor. If the input is an tf.IndexedSlices, the function instead does an allgather on the values and the indices, effectively doing an allreduce on the represented tensor. Arguments: tensor: tf.Tensor, tf.Variable, or tf.IndexedSlices to reduce. The shape of the input must be identical across all ranks. average: DEPRECATED, please use op instead. device_dense: Device to be used for dense tensors. Uses GPU by default if Horovod was built with HOROVOD_GPU_ALLREDUCE. device_sparse: Device to be used for sparse tensors. Uses GPU by default if Horovod was built with HOROVOD_GPU_ALLGATHER. compression: Compression algorithm used to reduce the amount of data sent and received by each worker node. Defaults to not using compression. op: The reduction operation to combine tensors across different ranks. Defaults to Average if None is given. Returns: A tensor of the same shape and type as `tensor`, summed across all processes. """ op = handle_average_backwards_compatibility(op, average) # Averaging happens in framework code, so translate that to Sum for the actual call true_op = Sum if op == Average else op if isinstance(tensor, tf.IndexedSlices): # TODO: Need to fix this to actuall call Adasum if op == Adasum: raise NotImplementedError('The Adasum reduction does not currently support sparse tensors. As a ' 'workaround please pass sparse_as_dense=True to DistributedOptimizer') with tf.device(device_sparse): # For IndexedSlices, do two allgathers instead of an allreduce. horovod_size = tf.cast(size(), tensor.values.dtype) values = allgather(tensor.values) indices = allgather(tensor.indices) # To make this operation into an average, divide allgathered values by # the Horovod size. new_values = (values / horovod_size) if op == Average else values return tf.IndexedSlices(new_values, indices, dense_shape=tensor.dense_shape) else: with tf.device(device_dense): horovod_size = tf.cast(size(), dtype=tensor.dtype) tensor_compressed, ctx = compression.compress(tensor) summed_tensor_compressed = _allreduce(tensor_compressed, op=true_op) summed_tensor = compression.decompress(summed_tensor_compressed, ctx) if op == Adasum: if 'CPU' not in tensor.device and gpu_available('tensorflow'): if nccl_built(): if not is_homogeneous: raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.') elif not check_num_rank_power_of_2(int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.') horovod_local_size = tf.cast(local_size(), dtype=tensor.dtype) new_tensor = summed_tensor / horovod_local_size else: warnings.warn('Adasum reduction does not currently support GPU reduction using MPI. Tensors ' 'are copied to CPU memory instead. To use Adasum for GPU reduction, please ' 'compile Horovod with HOROVOD_GPU_ALLREDUCE=NCCL.') new_tensor = summed_tensor else: if not check_num_rank_power_of_2(size()): raise NotImplementedError('Running Adasum with non-power of 2 ranks is not supported yet.') new_tensor = summed_tensor else: new_tensor = (summed_tensor / horovod_size) if op == Average else summed_tensor return new_tensor