def extract_chip2(img_path, roi, theta, new_size): 'Crops chip from image ; Rotates and scales; Converts to grayscale' # Read parent image np_img = io.imread(img_path) # Build transformation (rx, ry, rw, rh) = roi (rw_, rh_) = new_size Aff = np.array([[2., 0., 0.], [0., 1., 0.]]) print('built transform Aff=\n%r' % Aff) # Rotate and scale #chip = cv2.warpAffine(np_img, Aff, (rw_, rh_), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) chip = cv2.warpAffine(np_img, Aff, (rw_, rh_)) #print('warped') return chip
def extract_chip2(img_path, roi, theta, new_size): 'Crops chip from image ; Rotates and scales; Converts to grayscale' # Read parent image np_img = io.imread(img_path) # Build transformation (rx, ry, rw, rh) = roi (rw_, rh_) = new_size Aff = np.array([[ 2., 0., 0.], [ 0., 1., 0.]]) print('built transform Aff=\n%r' % Aff) # Rotate and scale #chip = cv2.warpAffine(np_img, Aff, (rw_, rh_), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) chip = cv2.warpAffine(np_img, Aff, (rw_, rh_)) #print('warped') return chip
def mask_creator_demo(): try: from hotspotter import fileio as io img = io.imread('/lena.png') except ImportError: img = np.random.uniform(0, 255, size=(100, 100)) ax = plt.subplot(111) ax.imshow(img) mc = MaskCreator(ax) plt.show() mask = mc.get_mask(img.shape) masked_img = apply_mask(img, mask) plt.imshow(masked_img) plt.title('Region outside of mask is darkened') plt.show()